cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A321191 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.

Original entry on oeis.org

1, 1, 3, 7, 29, 71, 336, 932, 4593, 13690, 69708, 222718, 1163734, 3902016, 20825927, 73229397, 397806717, 1452193925, 8016518379, 30328368519, 169781766056, 662143701506, 3755514158949, 15071604241851, 86496856963200, 356063096545571, 2066351471542036
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[1/(1 - x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2018 *)

Formula

a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} 1/(1 - x^(k_1*k_2*...*k_n)).

A318966 Expansion of e.g.f. Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(1/(i*j*k)).

Original entry on oeis.org

1, 1, 5, 21, 165, 1077, 11457, 103905, 1345257, 15834825, 237535389, 3372509709, 59235634125, 979573962429, 19224990899865, 366788042231193, 8019002662543953, 171360055378885905, 4132946756763614133, 97947895990285022085, 2576516749059849502581, 67124117357620005459141
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(1/(i*j*k)),k=1..21),j=1..50),i=1..50),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(1/(i j k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax} ], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Sum[DivisorSigma[0, d], {d, Divisors[k]}]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = (n - 1)! Sum[Sum[Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(tau_3(k)/k), where tau_3 = A007425.
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} tau(j) ) * x^k/k), where tau = number of divisors (A000005).
Previous Showing 11-12 of 12 results.