cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A344965 Decimal expansion of the sum of the reciprocals of the cubes of the zeros of the digamma function (negated).

Original entry on oeis.org

7, 8, 4, 8, 9, 8, 8, 2, 6, 2, 8, 0, 4, 5, 0, 6, 3, 0, 4, 8, 9, 8, 8, 3, 7, 3, 2, 7, 1, 6, 0, 5, 5, 0, 6, 7, 1, 1, 0, 1, 6, 4, 1, 2, 7, 9, 1, 1, 6, 3, 8, 0, 3, 2, 9, 2, 3, 2, 5, 3, 0, 0, 3, 4, 9, 8, 6, 4, 6, 7, 5, 0, 5, 8, 0, 6, 0, 1, 0, 3, 4, 4, 2, 7, 6, 1, 6
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^3, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			-7.84898826280450630489883732716055067110164127911638...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma*Pi^2/2 + 4*Zeta[3]  + EulerGamma^3, 10, 100][[1]]

Formula

Equals -gamma*Pi^2/2 - 4*zeta(3) - gamma^3, where gamma is Euler's constant (A001620).

A344966 Decimal expansion of the sum of the reciprocals of the fourth powers of the zeros of the digamma function.

Original entry on oeis.org

1, 5, 9, 0, 1, 8, 4, 7, 0, 3, 3, 2, 2, 3, 4, 9, 1, 5, 6, 9, 7, 2, 0, 8, 4, 5, 5, 7, 3, 5, 8, 4, 2, 5, 1, 7, 6, 5, 1, 9, 2, 5, 6, 6, 7, 2, 6, 4, 3, 4, 0, 2, 0, 4, 1, 0, 5, 7, 5, 7, 1, 6, 7, 9, 6, 5, 2, 1, 0, 5, 3, 8, 3, 8, 8, 6, 4, 6, 8, 5, 7, 8, 8, 9, 3, 2, 4
Offset: 2

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^4, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			15.90184703322349156972084557358425176519256672643402...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/9 + 2*EulerGamma^2*Pi^2/3 + 4*EulerGamma*Zeta[3] + EulerGamma^4, 10, 100][[1]]

Formula

Equals Pi^4/9 + 2*gamma^2*Pi^2/3 + 4*gamma*zeta(3) + gamma^4, where gamma is Euler's constant (A001620).

A344967 Decimal expansion of Sum_{k>=0} 1/(x_k^2 - 1), where x_k is the k-th zero of the digamma function.

Original entry on oeis.org

7, 1, 3, 4, 9, 4, 7, 2, 2, 1, 0, 9, 9, 6, 8, 1, 6, 7, 6, 9, 9, 3, 3, 5, 9, 4, 4, 4, 1, 3, 3, 3, 5, 6, 3, 6, 6, 5, 5, 3, 1, 8, 9, 3, 9, 5, 8, 5, 1, 2, 9, 5, 0, 5, 9, 4, 5, 8, 8, 7, 0, 1, 6, 5, 8, 1, 0, 4, 7, 2, 4, 0, 7, 9, 2, 1, 6, 8, 6, 8, 6, 0, 6, 1, 8, 7, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The zeros of the digamma function, i.e., the roots of psi(x) = 0 are x_0 = 1.461632... (A030169), the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			0.71349472210996816769933594441333563665531893958512...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/(12*EulerGamma) + EulerGamma/2 - 1, 10, 100][[1]]

Formula

Equals Pi^2/(12*gamma) + gamma/2 - 1, where gamma is Euler's constant (A001620).

A344968 Decimal expansion of Sum_{k>=0} 1/(x_k^2 - x_k), where x_k is the k-th zero of the digamma function.

Original entry on oeis.org

3, 4, 2, 6, 9, 8, 9, 4, 4, 4, 2, 1, 9, 9, 3, 6, 3, 3, 5, 3, 9, 8, 6, 7, 1, 8, 8, 8, 8, 2, 6, 6, 7, 1, 2, 7, 3, 3, 1, 0, 6, 3, 7, 8, 7, 9, 1, 7, 0, 2, 5, 9, 0, 1, 1, 8, 9, 1, 7, 7, 4, 0, 3, 3, 1, 6, 2, 0, 9, 4, 4, 8, 1, 5, 8, 4, 3, 3, 7, 3, 7, 2, 1, 2, 3, 7, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The zeros of the digamma function, i.e., the roots of psi(x) = 0 are x_0 = 1.461632... (A030169), the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			3.42698944421993633539867188882667127331063787917025...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/(6*EulerGamma) + EulerGamma, 10, 100][[1]]

Formula

Equals Pi^2/(6*gamma) + gamma, where gamma is Euler's constant (A001620).

A374856 a(n) is the least integer m such that the distance of x_m from its nearest integer is less than 1/n, where x_m is the m-th extrema of Gamma(x).

Original entry on oeis.org

0, 1, 6, 23, 76, 231, 681, 1968, 5605, 15817, 44324, 123573, 343157, 950000, 2623530, 7230746, 19896140, 54671729, 150058028, 411465352, 1127315946, 3086355718, 8444524052, 23092305853, 63117665557, 172444844373, 470961842866, 1285804853026, 3509404275438, 9575773901601
Offset: 1

Views

Author

Jwalin Bhatt, Sep 16 2024

Keywords

Comments

a(n) approximately equals exp(Pi/tan(Pi/n)).

Examples

			 -1 + 1.46163214496836 < 1/1
  1 - 0.50408300826446 < 1/2
  6 - 5.66716244155689 < 1/3
 23 - 22.7502429843061 < 1/4
 76 - 75.8003723367285 < 1/5
231 - 230.833395691244 < 1/6
		

Crossrefs

Programs

  • Python
    from gmpy2 import mpq, get_context, exp, digamma, sign, is_nan, RoundUp, RoundDown
    def apply_on_interval(func, interval):
        ctx.round = RoundUp
        rounded_up = func(interval[0])
        ctx.round = RoundDown
        rounded_down = func(interval[1])
        return rounded_down, rounded_up
    def digamma_sign_near_int(i, f):
        while True:
            d, u = apply_on_interval(lambda x: digamma(i + 1/x), [f, f])
            if not(is_nan(d)) and not(is_nan(u)) and (sign(d) == sign(u)):  return sign(d)
            ctx.precision += 1
    def find_next_zero_crossing(f, i, growth_factor):  # Bisect.
        lo, hi = int(i * const_e), int(i * growth_factor)
        while lo - 1 != hi:
            if digamma_sign_near_int(mid := (hi + lo) // 2, f) == -1:  lo = mid
            else:  hi = mid
        return hi
    def generate_sequence(n):
        seq, frac_denoms = [0, 1, 6], (mpq(str(i)) for i in range(4, n + 1))
        for f in frac_denoms:  seq.append(-find_next_zero_crossing(f, -seq[-1], seq[-1] / seq[-2]))
        return seq
    const_e, ctx = exp(1), get_context()
    ctx.precision = 2
    A374856 = generate_sequence(30)

Formula

A385170(a(n)) = n.
Previous Showing 11-15 of 15 results.