A231210 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of some of the consecutive patterns 123, 1432, 2431, 3421; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
1, 1, 2, 5, 1, 14, 9, 1, 46, 59, 14, 1, 177, 358, 164, 20, 1, 790, 2235, 1589, 398, 27, 1, 4024, 14658, 15034, 5659, 909, 35, 1, 23056, 103270, 139465, 77148, 17875, 2021, 44, 1, 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1, 1027850, 6315499
Offset: 0
Examples
T(3,1) = 1: 123. T(4,0) = 14: 1324, 1423, 2143, 2314, 2413, 3142, 3214, 3241, 3412, 4132, 4213, 4231, 4312, 4321. T(4,1) = 9: 1243, 1342, 1432, 2134, 2341, 2431, 3124, 3421, 4123. T(4,2) = 1: 1234. T(5,2) = 14: 12354, 12453, 12543, 13452, 13542, 14532, 21345, 23451, 23541, 24531, 31245, 34521, 41235, 51234. T(5,3) = 1: 12345. Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 5, 1; : 4 : 14, 9, 1; : 5 : 46, 59, 14, 1; : 6 : 177, 358, 164, 20, 1; : 7 : 790, 2235, 1589, 398, 27, 1; : 8 : 4024, 14658, 15034, 5659, 909, 35, 1; : 9 : 23056, 103270, 139465, 77148, 17875, 2021, 44, 1; : 10 : 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1;
Links
- Alois P. Heinz, Rows n = 0..142, flattened
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- S. Kitaev and T. Mansour, On multi-avoidance of generalized patterns
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( add(b(u+j-1, o-j, [2, 2, 2][t])*`if`(t=2, x, 1), j=1..o)+ add(b(u-j, o+j-1, [1, 3, 1][t])*`if`(t=3, x, 1), j=1..u))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..14);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[ Sum[b[u+j-1, o-j, {2, 2, 2}[[t]]]*If[t == 2, x, 1], {j, 1, o}] + Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]]*If[t == 3, x, 1], {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
Comments