cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A330251 Numbers k such that phi(k) = phi(k+3), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

3, 5, 8720288051472, 9134280520365, 41544070492925, 42466684755492, 51363581614342, 68616494581632, 113312918293575, 210911076210835, 215517565688425, 294988451482725, 383617980270525, 432759876053505, 442863123838135, 532068058516992, 892813363927485, 923102743748185, 929531173876305
Offset: 1

Views

Author

Michel Marcus and Giovanni Resta, Feb 29 2020

Keywords

Comments

10^15 < a(20) <= 1089641067389872.
Also terms: 1248817919303952, 1332436545865422, 1394926716616125, 1868522795664525, 1950445682260072.
a(4) and a(9) appear in Kevin Ford's paper.

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], EulerPhi[#] == EulerPhi[# + 3] &] (* Alonso del Arte, Mar 01 2020 *)
  • PARI
    isok(k) = eulerphi(k) == eulerphi(k+3); \\ Michel Marcus, Feb 29 2020

A330429 Numbers k such that phi(k) = phi(k+9), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

9, 15, 1005079920836, 13695542245376, 26160864154416, 27402841561095, 27599063056565, 110263115897935, 124632211478775, 127400054266476, 154090744843026, 205849483744896, 231019991767556, 339938754880725, 459718637643265, 632733228632505, 646552697065275, 683008674773416, 884965354448175
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2020

Keywords

Comments

a(20) > 10^15.

Crossrefs

A217619 a(n) = m/(12*n) where m is the least multiple of n that satisfies phi(m) = phi(m+6*n).

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Jonathan Sondow and Michel Marcus, Oct 09 2012

Keywords

Comments

It appears that A217140(n) is divisible by 12 for all n.

Examples

			A179188(1)=24 is divisible by 1 and the quotient 24 when divided by 12 gives 2, so a(1)=2.
A217139(1)=48 is divisible by 2 and the quotient 24 when divided by 12 gives 2, so a(2)=2.
A217140(5)=36 and 36/12=3, so a(5)=3.
		

Crossrefs

Formula

a(n) = A217140(n)/12.
Previous Showing 11-13 of 13 results.