A291550
Even amicable pairs whose sum is not divisible by 9.
Original entry on oeis.org
666030256, 696630544, 967947856, 1031796176, 2840437756, 3156691844, 4150593232, 4213181968, 4796703664, 4855069456, 10168398448, 11159012552, 33707179456, 33844856128, 53151801712, 55270703248, 62393407792, 65270990608, 107122129216, 107620508608, 284624443948, 287125556692
Offset: 1
(666030256, 696630544) is an amicable pair whose sum is 571750000640 == 8 (mod 9).
A359334
Amicable numbers k that can be expressed as a sum k = x+y = A001065(x) + A001065(y) and a sum k = z+t = A001065(z) + A001065(t) where (x, y, z, t) are parts of two amicable pairs and A001065(i) is the sum of the aliquot parts of i.
Original entry on oeis.org
67212, 1296000, 20528640, 37739520, 75479040, 321408000, 348364800, 556839360, 579156480, 638668800, 661893120, 761177088, 796340160, 883872000, 1181174400, 1282417920, 2068416000, 2395008000, 2682408960, 3155023872, 3599769600, 4049740800, 4606156800, 4716601344
Offset: 1
67212 is a term because 67212 = 220 + 66992 = 284 + 66928 where (220, 284) and (66928, 66992) are two amicable pairs.
1296000 is a term because 1296000 = 609928 + 686072 = 643336 + 652664 where (609928, 686072) and (643336, 652664) are two amicable pairs.
- Song Y. Yan, Perfect, Amicable and Sociable Numbers, World Scientific Pub Co Inc, 1996, pp. 113-121.
A229953
Numbers k for which k = sigma(sigma(x)) = sigma(sigma(y)) for some x and y such that k = x + y.
Original entry on oeis.org
4, 8, 32, 60, 128, 8192, 43200, 69360, 120960, 131072, 524288, 4146912, 6549984, 12927600, 13335840, 16329600, 34715520, 51603840, 57879360, 59633280, 107775360, 160797000, 169155840, 252067200, 371226240, 391789440, 436230144, 439883136, 489888000, 657296640
Offset: 1
4 = 2 + 2 = 2*sigma(sigma(2)).
8 = 4 + 4 = 2*sigma(sigma(4)).
32 = 16 + 16 = 2*sigma(sigma(16)).
60 = 23 + 37 = sigma(sigma(23)) = sigma(sigma(37)).
128 = 64 + 64 = 2*sigma(sigma(64)).
8192 = 4096 + 4096 = 2*sigma(sigma(4096)).
Comments