A217325
Number of self-inverse permutations in S_n with longest increasing subsequence of length 5.
Original entry on oeis.org
1, 5, 29, 127, 583, 2446, 10484, 43363, 181546, 748840, 3114308, 12878441, 53594473, 222761422, 930856456, 3893811380, 16365678160, 68937445765, 291656714515, 1237403762663, 5271285939671, 22524961082326, 96620152734652, 415768621923904, 1795530067804295
Offset: 5
a(5) = 1: 12345.
a(6) = 5: 123465, 123546, 124356, 132456, 213456.
-
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
((n+3)*(166075637*n^5+3319452867*n^4+10706068615*n^3-39910302747*n^2
-182846631872*n-159926209260)*a(n-1) +(840221898216*n+133982123900
-322021480097*n^3-83890810854*n^4+12016871251*n^5+3735622433*n^6
+111397917411*n^2)*a(n-2)-(n-2)*(2142183361*n^5+66617759078*n^4
-47640468971*n^3-611402096064*n^2+15449945364*n+452645243780)*a(n-3)
-(n-2)*(n-3)*(33769818805*n^4-54918997862*n^3 -469629276839*n^2
+789889969148*n +94438295920)*a(-4+n) -4*(n-2)*(n-3)*(-4+n)*
(2060107324*n^3 -87569131518*n^2+293565842963*n -151080184425)*a(n-5)
+240*(n-2)*(n-3)*(n-5)*(168175627*n-312397451)*(-4+n)^2*a(n-6))/
(8*(13927136*n+37088781)*(n-5)*(n+6)*(n+4)*(n+3)^2)))
end:
seq(a(n), n=5..40);
A217326
Number of self-inverse permutations in S_n with longest increasing subsequence of length 6.
Original entry on oeis.org
1, 6, 41, 209, 1106, 5323, 26069, 122901, 585922, 2747977, 13000269, 61088173, 289186846, 1366147708, 6496681304, 30905464864, 147912712795, 709073550307, 3418258506885, 16517431269189, 80230551304034, 390774361811783, 1912602871119956, 9388456361080840
Offset: 6
a(6) = 1: 123456.
a(7) = 6: 1234576, 1234657, 1235467, 1243567, 1324567, 2134567.
A217327
Number of self-inverse permutations in S_n with longest increasing subsequence of length 7.
Original entry on oeis.org
1, 7, 55, 319, 1904, 10275, 56135, 294386, 1556323, 8086433, 42298721, 219795160, 1149139210, 5999688692, 31506046052, 165664633982, 875886376212, 4643488263933, 24746018418741, 132328997879066, 711142850556217, 3836134976520394, 20791024498584110
Offset: 7
a(7) = 1: 1234567.
a(8) = 7: 12345687, 12345768, 12346578, 12354678, 12435678, 13245678, 21345678.
A217328
Number of self-inverse permutations in S_n with longest increasing subsequence of length 8.
Original entry on oeis.org
1, 8, 71, 461, 3057, 18225, 109446, 628652, 3628517, 20538209, 116808172, 659078098, 3737763884, 21153403644, 120354760098, 685455514294, 3925104616303, 22535893275064, 130089736567064, 753604985013128, 4388755545268226, 25660332309744370, 150802834643569274
Offset: 8
a(8) = 1: 12345678.
a(9) = 8: 123456798, 123456879, 123457689, 123465789, 123546789, 124356789, 132456789, 213456789.
A218262
Number of standard Young tableaux of n cells and height >= 10.
Original entry on oeis.org
1, 11, 121, 1001, 8086, 59228, 426673, 2946593, 20161558, 135303408, 904408398, 5995379358, 39727129830, 262629161094, 1739604051411, 11535387587595, 76763703224070, 512448824337780, 3436760740882050, 23151339236295810, 156789753069685500, 1067435349046248600
Offset: 10
A218263
Number of standard Young tableaux of n cells and height >= 3.
Original entry on oeis.org
1, 4, 16, 56, 197, 694, 2494, 9244, 35234, 139228, 566788, 2387048, 10343101, 46193866, 211775002, 997265204, 4809609062, 23758479340, 119952340180, 618883933480, 3257842530546, 17492187873444, 95680438560276, 532985197799976, 3020676725917252
Offset: 3
-
b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
a:= n-> b(n) -binomial(n, iquo(n, 2)):
seq(a(n), n=3..30);
-
b[n_] := b[n] = If[n<2, 1, b[n-1] + (n-1)*b[n-2]];
a[n_] := b[n] - Binomial[n, Quotient[n, 2]];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
A218264
Number of standard Young tableaux of n cells and height >= 4.
Original entry on oeis.org
1, 5, 25, 105, 441, 1785, 7308, 29898, 124641, 526669, 2276846, 10038964, 45353269, 209442533, 990777442, 4791502156, 23707812077, 119810145337, 618483875689, 3256714122209, 17488997849803, 95671400358075, 532959538382100, 3020603738202750, 17411069344112895
Offset: 4
-
a:= proc(n) option remember;
`if`(n<5, [0$4, 1][n+1], ((-5-7*n+3*n^2)*a(n-1)
+(n-1)*(n^2-n-11)*a(n-2) -2*n*(n-1)*(n-2)*a(n-3)
-3*(n-1)*(n-2)*(n-3)*a(n-4))/((n+2)*(n-4)))
end:
seq(a(n), n=4..30);
-
a[n_] := a[n] = If[n<5, {0,0,0,0,1}[[n+1]], ((-5-7n+3n^2)a[n-1] + (n-1)(n^2-n-11)a[n-2] - 2n(n-1)(n-2)a[n-3] - 3(n-1)(n-2)(n-3)a[n-4])/ ((n+2)(n-4))];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
A218265
Number of standard Young tableaux of n cells and height >= 5.
Original entry on oeis.org
1, 6, 36, 176, 856, 3952, 18272, 83524, 384463, 1777010, 8304636, 39254076, 188160268, 915651672, 4527595824, 22771294440, 116496899100, 606656445480, 3214574890480, 17337658462800, 95128543350576, 530998366724576, 3013524116661952, 17385349086129304
Offset: 5
-
a:= proc(n) option remember; `if`(n<13,
[0$5, 1, 6, 36, 176, 856, 3952, 18272, 83524][n+1],
((n^4-2*n^3-179*n^2+256*n+804) *a(n-1)
+(n-1)*(n^4+6*n^3-295*n^2+1108*n+100) *a(n-2)
-4*(n-1)*(n-2)*(6*n^2-83*n+67) *a(n-3)
-16*(n-11)*(n-1)*(n-3)*(n-2)^2 *a(n-4))/
((n-12)*(n-5)*(n+4)*(n+3)))
end:
seq(a(n), n=5..30);
A218266
Number of standard Young tableaux of n cells and height >= 6.
Original entry on oeis.org
1, 7, 49, 273, 1506, 7788, 40161, 202917, 1028170, 5190328, 26375635, 134565795, 692890250, 3596739368, 18877483060, 100131220940, 537718999715, 2922918175965, 16100254700137, 89857257410905, 508473405642250, 2916903963927300, 16969580464205400
Offset: 6
-
b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
g:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],
((3*n^2+17*n+15)*g(n-1) +(n-1)*(13*n+9)*g(n-2)
-15*(n-1)*(n-2)*g(n-3)) / ((n+4)*(n+6)))
end:
a:= n-> b(n) -g(n):
seq(a(n), n=6..30);
A218267
Number of standard Young tableaux of n cells and height >= 7.
Original entry on oeis.org
1, 8, 64, 400, 2465, 14092, 80016, 442248, 2442351, 13375366, 73477622, 403703404, 2230591660, 12380801756, 69225756076, 389806286920, 2213844625658, 12681996193252, 73339826141716, 428242854338216, 2526129602115517, 15056977593085444, 90712249806247400
Offset: 7
-
b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
g:= proc(n) option remember;
`if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*g(n-1)
+4*(n-1)*(10*n^2+58*n+33)*g(n-2) -144*(n-1)*(n-2)*g(n-3)
-144*(n-1)*(n-2)*(n-3)*g(n-4)) / ((n+5)*(n+8)*(n+9)))
end:
a:= n-> b(n) -g(n):
seq(a(n), n=7..30);
Comments