1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 2, 4, 5, 6, 7, 4, 6, 8, 9, 10, 11, 4, 8, 10, 12, 13, 14, 15, 7, 11, 15, 17, 19, 20, 21, 22, 8, 15, 19, 23, 25, 27, 28, 29, 30, 12, 20, 27, 31, 35, 37, 39, 40, 41, 42, 14, 26, 34, 41, 45, 49, 51, 53, 54, 55, 56, 21, 35, 47
Offset: 1
For n = 5 and k = 2 we have that the 4th shell of 5 contains two regions: [2] and [4,2,1,1,1]. Then we can see that the 5th shell of 5 contains two regions: [3] and [5,2,1,1,1,1,1]. Therefore the total number of regions in the last two shells of 5 is T(5,2) = 2+2 = 4 (see illustration in the link section).
Triangle begins:
1;
1, 2;
1, 2, 3;
2, 3, 4, 5;
2, 4, 5, 6, 7;
4, 6, 8, 9, 10, 11;
4, 8, 10, 12, 13, 14, 15;
7, 11, 15, 17, 19, 20, 21, 22;
8, 15, 19, 23, 25, 27, 28, 29, 30;
12, 20, 27, 31, 35, 37, 39, 40, 41, 42;
14, 26, 34, 41, 45, 49, 51, 53, 54, 55, 56;
21, 35, 47, 55, 62, 66, 70, 72, 74, 75, 76, 77;
A228524
Triangle read by rows: T(n,k) = total number of occurrences of parts k in the n-th section of the set of compositions (ordered partitions) of any integer >= n.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 7, 3, 1, 1, 16, 7, 3, 1, 1, 36, 16, 7, 3, 1, 1, 80, 36, 16, 7, 3, 1, 1, 176, 80, 36, 16, 7, 3, 1, 1, 384, 176, 80, 36, 16, 7, 3, 1, 1, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 3840, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1
Offset: 1
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4, also the first four sections of the set of compositions of any integer >= 4:
.
. 1 2 3 4
. _ _ _ _
. |_| _| | | | | |
. |_ _| _ _| | | |
. |_| | | |
. |_ _ _| _ _ _| |
. |_| | |
. |_ _| |
. |_| |
. |_ _ _ _|
.
For n = 4 and k = 2, T(4,2) = 3 because there are 3 parts of size 2 in all compositions of 4, see below:
--------------------------------------------------------
. The last section Number of
. Composition of 4 of the set of parts of
. compositions of 4 size k
. -------------------- -------------------
. Diagram Diagram k = 1 2 3 4
. ------------------------------------------------------
. _ _ _ _ _
. 1+1+1+1 |_| | | | 1 | | 1 0 0 0
. 2+1+1 |_ _| | | 1 | | 1 0 0 0
. 1+2+1 |_| | | 1 | | 1 0 0 0
. 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0
. 1+1+2 |_| | | 1+1+2 |_| | | 2 1 0 0
. 2+2 |_ _| | 2+2 |_ _| | 0 2 0 0
. 1+3 |_| | 1+3 |_| | 1 0 1 0
. 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 1
. ---------
. Column sums give row 4: 7,3,1,1
.
Triangle begins:
1;
1, 1;
3, 1, 1;
7, 3, 1, 1;
16, 7, 3, 1, 1;
36, 16, 7, 3, 1, 1;
80, 36, 16, 7, 3, 1, 1;
176, 80, 36, 16, 7, 3, 1, 1;
384, 176, 80, 36, 16, 7, 3, 1, 1;
832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1;
3840, 1792, 832, 384,176, 80, 36, 16, 7, 3, 1, 1;
8192, 3840,1792, 832,384,176, 80, 36, 16, 7, 3, 1, 1;
...
A341049
Irregular triangle read by rows T(n,k) in which row n lists the terms of n-th row of A336811 in nondecreasing order.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 2, 3, 4, 6, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 8, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7, 9, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 10
Offset: 1
Triangle begins:
1;
2;
1, 3;
1, 2, 4;
1, 1, 2, 3, 5;
1, 1, 2, 2, 3, 4, 6;
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7;
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 8;
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7, 9;
...
Cf.
A000070,
A000041,
A002865,
A027750,
A028310,
A133735,
A135010,
A138121,
A138137,
A176206,
A182703,
A187219,
A207378,
A237593,
A336812,
A338156,
A339278,
A340061.
-
A341049[rowmax_]:=Table[Flatten[Table[ConstantArray[n-m,PartitionsP[m]-PartitionsP[m-1]],{m,n-1,0,-1}]],{n,rowmax}];
A341049[10] (* Generates 10 rows *) (* Paolo Xausa, Feb 17 2023 *)
-
A341049(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(n-m)-numbpart(n-m-1),i,m))));
A341049(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023
A185370
Triangle read by rows: T(n,k) is the number of occurrences of k in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 0, 1, 3, 1, 0, 1, 0, 0, 1, 5, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 7, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 11, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 1
Offset: 1
First seven regions of any integer >= 5 are
[1], [2,1], [3,1,1], [2], [4,2,1,1,1], [3], [5,2,1,1,1,1,1] (see illustrations, see also A206437). The 7th region contains five 1's, only one 2 and only one 5. There are no 3's. There are no 4's, so row 7 is [5, 1, 0, 0, 1].
-----------------------------------------
n j m k : 1 2 3 4 5 6 7 8
-----------------------------------------
1 1 1 1;
2 2 1 1, 1;
3 3 1 2, 0, 1;
4 4 1 0, 1;
5 4 2 3, 1, 0, 1;
6 5 1 0, 0, 1;
7 5 2 5, 1, 0, 0, 1;
8 6 1 0, 1;
9 6 2 0, 1, 0, 1;
10 6 3 0, 0, 1;
11 6 4 7, 2, 1, 0, 0, 1;
12 7 1 0, 0, 1;
13 7 2 0, 1, 0, 0, 1;
14 7 3 0, 0, 0, 1;
15 7 4 11, 2, 1, 0, 0, 0, 1;
16 8 1 0, 1;
17 8 2 0, 1, 0, 1;
18 8 3 0, 0, 1;
19 8 4 0, 2, 1, 0, 0, 1;
20 8 5 0, 0, 0, 0, 1;
21 8 6 0, 0, 0, 1;
22 8 7 15, 4, 1, 1, 0, 0, 0, 1;
A210946
Triangle read by rows: T(n,k) = sum of parts in the k-th column of the mirror of the last section of the set of partitions of n with its parts aligned to the right margin.
Original entry on oeis.org
1, 3, 5, 9, 2, 12, 3, 20, 9, 2, 25, 11, 3, 38, 22, 9, 2, 49, 28, 14, 3, 69, 44, 26, 9, 2, 87, 55, 37, 14, 3, 123, 83, 62, 29, 9, 2, 152
Offset: 1
For n = 7 the illustration shows two arrangements of the last section of the set of partitions of 7:
.
. (7) (7)
. (4+3) (3+4)
. (5+2) (2+5)
. (3+2+2) (2+2+3)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. (1) (1)
. ---------
. 25,11,3
.
The left hand picture shows the last section of 7 with its parts aligned to the right margin. In the right hand picture (the mirror) we can see that the sum of all parts of the columns 1..3 are 25, 11, 3 therefore row 7 lists 25, 11, 3.
Written as a triangle begins:
1;
3;
5;
9, 2;
12, 3;
20, 9, 2;
25, 11, 3;
38, 22, 9, 2;
49, 28, 14, 3;
69, 44, 26, 9, 2;
87, 55, 37, 14, 3,
123, 83, 62, 29, 9, 2;
Cf.
A135010,
A138121,
A182703,
A194714,
A196807,
A206437,
A207031,
A207034,
A207035,
A210945,
A210952,
A210953.
A330242
Sum of largest emergent parts of the partitions of n.
Original entry on oeis.org
0, 0, 0, 2, 3, 9, 12, 24, 33, 54, 72, 112, 144, 210, 273, 379, 485, 661, 835, 1112, 1401, 1825, 2284, 2944, 3652, 4645, 5745, 7223, 8879, 11080, 13541, 16760, 20406, 25062, 30379, 37102, 44761, 54351, 65347, 78919, 94517, 113645, 135603, 162331, 193088, 230182, 272916, 324195, 383169, 453571
Offset: 1
For n = 9 the diagram of
the partitions of 9 that
do not contain 1 as a part
is as shown below: Partitions
.
|_ _ _| | | | [3, 2, 2, 2]
|_ _ _ _ _| | | [5, 2, 2]
|_ _ _ _| | | [4, 3, 2]
|_ _ _ _ _ _ _| | [7, 2]
|_ _ _| | | [3, 3, 3]
|_ _ _ _ _ _| | [6, 3]
|_ _ _ _ _| | [5, 4]
|_ _ _ _ _ _ _ _ _| [9]
.
Note that the above diagram is also the "head" of the last section of the set of partitions of 9, where the "tail" is formed by A000041(9-1)= 22 1's.
The diagram of the
emergent parts is as
shown below: Emergent parts
.
|_ _ _| | | [3, 2, 2]
|_ _ _ _ _| | [5, 2]
|_ _ _ _| | [4, 3]
|_ _ _ _ _ _ _| [7]
|_ _ _| | [3, 3]
|_ _ _ _ _ _| [6]
|_ _ _ _ _| [5]
.
The sum of the largest emergent parts is 3 + 5 + 4 + 7 + 3 + 6 + 5 = 33, so a(9) = 33.
Cf.
A000041,
A002865,
A006128,
A135010,
A138135,
A138137,
A141285,
A182699,
A182703,
A182709,
A186114,
A186412,
A193870,
A194446,
A194447,
A211978,
A206437,
A207031,
A299474,
A299475.
Comments