cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A356039 a(n) = Sum_{k=1..n} binomial(n,k) * sigma_3(k).

Original entry on oeis.org

1, 11, 58, 243, 866, 2804, 8485, 24387, 67333, 180086, 469338, 1196976, 2996956, 7385837, 17954243, 43125267, 102494548, 241309031, 563341508, 1305142418, 3002938045, 6866090880, 15609292379, 35299794600, 79443050541, 177989130174, 397124963671, 882642816697, 1954708794400
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 24 2022

Keywords

Comments

For m>0, Sum_{k=1..n} binomial(n,k) * sigma_m(k) ~ zeta(m+1) * n^m * 2^(n-m).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma[3](i)*binomial(n,i), i=1..n), n=1..60); # Ridouane Oudra, Oct 31 2022
  • Mathematica
    Table[Sum[Binomial[n, k] * DivisorSigma[3, k], {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 3)); \\ Michel Marcus, Jul 24 2022

Formula

a(n) ~ Pi^4 * n^3 * 2^(n-4) / 45.
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i^3)*binomial(n,i*j). - Ridouane Oudra, Oct 31 2022

A356338 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma(k).

Original entry on oeis.org

1, 7, 37, 179, 826, 3703, 16283, 70619, 303121, 1290682, 5460511, 22981019, 96296552, 402024497, 1673116072, 6944105579, 28752345362, 118801061059, 489959398840, 2017339105514, 8293732341134, 34051489445365, 139634028015269, 571955737066307, 2340402722605976, 9567794393004816
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * sigma(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ Pi^(3/2) * 4^(n-1) * sqrt(n) / 3.

A356341 a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma(k).

Original entry on oeis.org

2, 22, 131, 806, 3607, 20395, 84254, 422230, 1842359, 8616007, 33843614, 173724659, 676938316, 2983855666, 12806013721, 57981927158, 223432922515, 1040923729567, 4004885305320, 18277809794671, 75668287229078, 317458937099194, 1215454524390767, 5785782106653667
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * sigma(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ Pi^2 * n * 4^(n-1) / 3.

A356344 a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma(k).

Original entry on oeis.org

2, 20, 100, 590, 2102, 13190, 40646, 233696, 865756, 4191364, 12656548, 88372916, 233981316, 1196779716, 4919600196, 23553092286, 65558004246, 419488280946, 1126393556946, 6915947767386, 24140199749466, 99887762443386, 297490099905786, 2232346320891786, 6151075120462098
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Comments

The average value of a(n) is Pi^(3/2) * sqrt(n) * 2^(2*n+1) / 9.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * sigma(k)); \\ Michel Marcus, Aug 05 2022
Previous Showing 11-14 of 14 results.