A285233
Number of entries in the fifth cycles of all permutations of [n].
Original entry on oeis.org
1, 17, 221, 2724, 34009, 441383, 6020276, 86673088, 1318681308, 21194234508, 359421505224, 6421154849208, 120637782989568, 2379195625677696, 49167226489281408, 1062833010282628992, 23992442301958329600, 564697104190192569600, 13836823816466433139200
Offset: 5
-
a:= proc(n) option remember; `if`(n<6, [0$5, 1][n+1],
((4*(n^3-9*n^2+24*n-19))*a(n-1)-(6*n^4-72*n^3+
307*n^2-547*n+334)*a(n-2)+(4*n^5-64*n^4+398*n^3
-1191*n^2+1683*n-862)*a(n-3)-(n-4)^5*(n-1)*a(n-4))
/((n-2)*(n-5)))
end:
seq(a(n), n=5..25);
-
a[3] = a[4] = 0; a[5] = 1; a[6] = 17; a[n_] := a[n] = ((4(n^3 - 9n^2 + 24n - 19)) a[n-1] - (6n^4 - 72n^3 + 307n^2 - 547n + 334) a[n-2] + (4n^5 - 64n^4 + 398n^3 - 1191n^2 + 1683n - 862) a[n-3] - (n-4)^5 (n-1) a[n-4]) / ((n - 2)(n - 5));
Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A285234
Number of entries in the sixth cycles of all permutations of [n].
Original entry on oeis.org
1, 23, 382, 5780, 86029, 1301673, 20338679, 330737236, 5618265376, 99849949772, 1857170751804, 36135886878072, 734947859916792, 15608257104179952, 345724111468700496, 7977315239656638912, 191516062334747746752, 4778050475554642998144, 123731984754223222096512
Offset: 6
-
a:= proc(n) option remember; `if`(n<7, [0$6, 1][n+1],
((5*n^3-58*n^2+207*n-230)*a(n-1)-(10*n^4-152*n^3
+835*n^2-1973*n+1690)*a(n-2)+(n-4)*(10*n^4
-158*n^3+909*n^2-2251*n+2000)*a(n-3)-(5*n^6
-127*n^5+1330*n^4-7335*n^3+22396*n^2-35717*n
+23058)*a(n-4)+(n-5)^6*(n-2)*a(n-5))/((n-3)*(n-6)))
end:
seq(a(n), n=6..25);
-
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]][[6]];
Table[a[n], {n, 6, 25}] (* Jean-François Alcover, Jun 01 2018, after Alois P. Heinz *)
A285235
Number of entries in the seventh cycles of all permutations of [n].
Original entry on oeis.org
1, 30, 622, 11378, 199809, 3499572, 62333543, 1141073295, 21593291506, 423749322362, 8637159909596, 182967605341204, 4028364756058464, 92147187469290768, 2188667860854515856, 53939340317601471888, 1378181549321980128288, 36476226109960185948768
Offset: 7
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 7), x, 1):
seq(a(n), n=7..30);
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 7], x, 1];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A285236
Number of entries in the eighth cycles of all permutations of [n].
Original entry on oeis.org
1, 38, 964, 21018, 431007, 8671656, 175065071, 3591984289, 75473055841, 1631318215818, 36369569578502, 837619857754240, 19943142053389024, 491010028537071248, 12499878460133012064, 328936666440527737296, 8943724877454118086096, 251125623168859020015072
Offset: 8
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 8), x, 1):
seq(a(n), n=8..30);
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 8], x, 1];
Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A285237
Number of entries in the ninth cycles of all permutations of [n].
Original entry on oeis.org
1, 47, 1434, 36792, 872511, 20014299, 455265257, 10420963144, 242208466145, 5748862140283, 139849088103596, 3494752531722564, 89838192687840304, 2377612074981717632, 64807344109730799968, 1819505580964336136560, 52611858820598185363536
Offset: 9
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 9), x, 1):
seq(a(n), n=9..30);
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 9], x, 1];
Table[a[n], {n, 9, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
A285238
Number of entries in the tenth cycles of all permutations of [n].
Original entry on oeis.org
1, 57, 2061, 61524, 1672323, 43426821, 1106667572, 28127644296, 720378419177, 18715673685469, 495446888127507, 13403690294272704, 371315688867567088, 10546557230068193568, 307378160401299252032, 9196581430595518185328, 282526394585486139996736
Offset: 10
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 10), x, 1):
seq(a(n), n=10..30);
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 10], x, 1];
Table[a[n], {n, 10, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
Comments