cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A281785 a(n) is multiplicative with a(2^e) = 1, a(3^e) = -8 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.

Original entry on oeis.org

1, 1, -8, 1, 6, -8, 8, 1, -8, 6, 12, -8, 14, 8, -48, 1, 18, -8, 20, 6, -64, 12, 24, -8, 31, 14, -8, 8, 30, -48, 32, 1, -96, 18, 48, -8, 38, 20, -112, 6, 42, -64, 44, 12, -48, 24, 48, -8, 57, 31, -144, 14, 54, -8, 72, 8, -160, 30, 60, -48, 62, 32, -64, 1, 84
Offset: 1

Views

Author

Michael Somos, Jan 30 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 - 8*x^3 + x^4 + 6*x^5 - 8*x^6 + 8*x^7 + x^8 - 8*x^9 + 6*x^10 + ...
		

Crossrefs

Programs

  • Maple
    f:= n -> mul(piecewise( t[1] = 2, 1, t[1] = 3,-8,(t[1]^(t[2]+1)-1)/(t[1]-1)), t = ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Feb 01 2017
  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ Divisible[n, 3], -8, 1] DivisorSigma[ 1, n / (2^IntegerExponent[n, 2] 3^IntegerExponent[n, 3])]];
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 3, 1, # == 3, -8, True, (#^(#2+1) - 1) / (# - 1)] & @@@ FactorInteger@n)];
  • PARI
    {a(n) = if( n<1, 0, if( n%3, 1, -8) * sigma(n / (2^valuation(n, 2) * 3^valuation(n, 3))))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d*(d%2)) - if( n%3==0, 12 * sumdiv(n/3, d, d*(d%2))) + if( n%9==0, 27 * sumdiv(n/9, d, d*(d%2))))};

Formula

Expansion of (a(x) * b(x^2) + a(x^2) * b(x) - 2) / 3 in powers of x where a(), b() are cubic AGM functions.
Expansion of (3 * b(x^3) * b(x^6) - b(x) * b(x^2) - 2) / 3 in powers of x where b() is a cubic AGM function.
3 * a(n) = A281786(n) if n>0. a(2*n) = a(n). a(3*n) = -8 * A186099(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1-2^(1-s)) * (1-3^(1-s)) * (1-3^(2-s)). - Amiram Eldar, Oct 24 2023

A365211 The sum of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 31, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 57, 93, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034448 at n = 25.
The number of these divisors is A365210(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 1 + p^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 1 + f[i,1]^f[i,2], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)));}

Formula

Multiplicative with a(p^e) = 1 + p^e for p = 2 and 3, and a(p^e) = (p^(e+1)-1)/(p-1) for a prime p >= 5.
a(n) <= A000203(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034448(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000203(A065330(n)) * A034448(A065331(n)).
Dirichlet g.f.: (1 - 1/2^(2*s-1)) * (1 - 1/3^(2*s-1)) * zeta(s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 91*Pi^2/1296 = 0.69300463... .
Previous Showing 11-12 of 12 results.