cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 107 results. Next

A187908 Complement of A187907.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 17, 18, 21, 22, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 45, 47, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 70, 72, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 140, 142, 144, 146, 148, 150, 152
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2011

Keywords

Comments

A187908 gives the ranks of the numbers in the rank transform R(a) when all the numbers in a and R(a) are jointly ranked, where a=A187907. For the definition and basic properties of rank transform, see A187224.
A187233(n)=A187908(n) for n=1,2,...,18; A187233(19)=40 and A187908(19)=39. The closeness of A187908 to A187233 and the closeness of their complements result from the closeness of 7/4 to 4-sqrt(5).

Crossrefs

Programs

A179185 Rank transform of the sequence floor(n*sqrt(2)); complement of A186543.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 11, 14, 16, 17, 19, 20, 23, 24, 27, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 52, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 75, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 106, 109, 110, 112, 114, 115, 117, 119, 121, 123, 124, 126, 128, 130, 132, 134, 136, 137, 139, 141
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    m = 2^(1/2);
    seqA = Table[Floor[m*n], {n, 1, 180}]  (* A001951 *)
    seqB = Table[n, {n, 1, 80}];  (* A000027 *)
    jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],
    Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,{#1, 2} & /@ seqB}, 1]];
    limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]]  (* A179185 *)
    Complement[Range[Length[seqA]], limseqU]  (* A186543 *)
    (* by Peter J. C. Moses, Mar 09 2011 *)

A187226 Rank transform of the sequence floor(n/4); complement of A187227.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[n/4],{n,1,220}] (*A002265 essentially *)
    seqB=Table[n,{n,1,120}];(*A000027*)jointRank[{seqA_,seqB_}]:={Flatten@Position[#1,{,1}],Flatten@Position[#1,{,2}]}&[Sort@Flatten[{{#1,1}&/@seqA,{#1,2}&/@seqB},1]];
    limseqU=FixedPoint[jointRank[{seqA,#1[[1]]}]&,jointRank[{seqA,seqB}]][[1]] (*A187226*)
    Complement[Range[Length[seqA]],limseqU] (*A187227*)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187228 Rank transform of the sequence floor(3n/4); complement of A187229.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 10, 11, 12, 14, 16, 18, 19, 20, 22, 24, 25, 27, 28, 30, 31, 32, 34, 35, 36, 38, 40, 42, 43, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 94, 96, 97, 99, 100, 102, 103, 104, 106, 108, 109, 111, 112, 114, 115, 116, 118, 120, 121, 123, 124, 126, 127, 128, 130, 131, 132, 134, 136, 138, 139, 140, 142, 143, 144, 146, 148, 149, 150
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[3n/4],{n,1,220}] (*A057353*)
    seqB=Table[n,{n,1,220}];(*A000027*)
    jointRank[{seqA_,seqB_}]:={Flatten@Position[#1,{,1}],Flatten@Position[#1,{,2}]}&[Sort@Flatten[{{#1,1}&/@seqA,{#1,2}&/@seqB},1]];
    limseqU=FixedPoint[jointRank[{seqA,#1[[1]]}]&,jointRank[{seqA,seqB}]][[1]] (*A187228*)
    Complement[Range[Length[seqA]],limseqU] (*A187229*)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187230 Rank transform of the sequence floor(5n/4); complement of A187231.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 11, 14, 15, 17, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 55, 56, 58, 59, 62, 63, 65, 66, 69, 70, 72, 73, 75, 77, 79, 80, 83, 84, 85, 87, 89, 91, 93, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110, 112, 113, 114, 117, 119, 120, 122, 124, 125, 127, 128, 131, 132, 134, 135, 138, 139, 141, 142, 144, 146, 148, 149, 151, 153, 154, 156, 159, 160, 161, 163, 165
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[5n/4],{n,1,220}] (*A001068*)
    seqB=Table[n,{n,1,220}];(*A000027*)
    jointRank[{seqA_,seqB_}]:={Flatten@Position[#1,{,1}],Flatten@Position[#1,{,2}]}&[Sort@Flatten[{{#1,1}&/@seqA,{#1,2}&/@seqB},1]];
    limseqU=FixedPoint[jointRank[{seqA,#1[[1]]}]&,jointRank[{seqA,seqB}]][[1]] (*A187230*)
    Complement[Range[Length[seqA]],limseqU] (*A187231*)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187319 Rank transform of the sequence floor(n/sqrt(3)); complement of A187410.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 108, 110, 111, 112, 113, 115, 116, 118, 119, 120, 122, 123, 125, 126, 127, 129
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    m = 3^(-1/2);
    seqA = Table[Floor[m*n], {n, 1, 180}]  (* A097337 *)
    seqB = Table[n, {n, 1, 80}];                   (* A000027 *)
    jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],
    Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,
    {#1, 2} & /@ seqB}, 1]];
    limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank
    [{seqA, seqB}]][[1]]                                      (* A187319 *)
    Complement[Range[Length[seqA]], limseqU]  (* A187410 *)
    (* by Peter J. C. Moses, Mar 09 2011 *)

A187343 Rank transform of the sequence floor(6n/5); complement of A187344.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 11, 13, 14, 17, 18, 20, 22, 23, 25, 27, 28, 30, 31, 34, 35, 37, 38, 40, 42, 44, 46, 47, 48, 51, 52, 54, 56, 57, 59, 61, 62, 64, 65, 68, 70, 71, 72, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 91, 94, 95, 96, 98, 99, 102, 104, 105, 107, 108, 110, 112, 114, 115
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[6n/5], {n, 1, 220}] (* A047226 *)
    seqB=Table[n, {n, 1, 220}];          (* A000027 *)
    jointRank[{seqA_, seqB_}]:={Flatten@Position[#1, {, 1}], Flatten@Position[#1, {, 2}]}&[Sort@Flatten[{{#1, 1}&/@seqA, {#1, 2}&/@seqB}, 1]];
    limseqU=FixedPoint[jointRank[{seqA, #1[[1]]}]&, jointRank[{seqA, seqB}]][[1]]                  (* A187343 *)
    Complement[Range[Length[seqA]], limseqU] (* A187344 *)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187345 Rank transform of the sequence floor(7n/5); complement of A187346.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 11, 14, 16, 17, 19, 20, 23, 24, 27, 28, 29, 32, 33, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 99, 101, 103, 105, 107, 108, 110, 112, 113, 116, 117, 119
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[7n/5], {n, 1, 220}] (* A047381 *)
    seqB=Table[n, {n, 1, 220}]; (* A000027 *)
    jointRank[{seqA_, seqB_}]:={Flatten@Position[#1, {, 1}], Flatten@Position[#1, {, 2}]}&[Sort@Flatten[{{#1, 1}&/@seqA, {#1, 2}&/@seqB}, 1]];
    limseqU=FixedPoint[jointRank[{seqA, #1[[1]]}]&, jointRank[{seqA, seqB}]][[1]] (* A187345 *)
    Complement[Range[Length[seqA]], limseqU] (* A187346 *)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187347 Rank transform of the sequence floor(8n/5); complement of A187348.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 13, 14, 16, 18, 20, 22, 23, 25, 28, 29, 31, 32, 35, 37, 39, 40, 42, 44, 46, 48, 50, 51, 53, 55, 57, 59, 61, 63, 65, 66, 68, 70, 72, 74, 75, 78, 79, 81, 83, 85, 87, 89, 90, 93, 94, 96, 98, 100, 102, 103, 106, 107, 109, 111, 113, 115, 116, 118, 121, 122
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    seqA=Table[Floor[8n/5], {n, 1, 220}] (* A047416 *)
    seqB=Table[n, {n, 1, 220}]; (* A000027 *)
    jointRank[{seqA_, seqB_}]:={Flatten@Position[#1, {, 1}], Flatten@Position[#1, {, 2}]}&[Sort@Flatten[{{#1, 1}&/@seqA, {#1, 2}&/@seqB}, 1]];
    limseqU=FixedPoint[jointRank[{seqA, #1[[1]]}]&, jointRank[{seqA, seqB}]][[1]] (* A187347 *)
    Complement[Range[Length[seqA]], limseqU] (* A187348 *)
    (*by Peter J. C. Moses, Mar 07 2011*)

A187348 Complement of A187347.

Original entry on oeis.org

2, 4, 6, 8, 11, 12, 15, 17, 19, 21, 24, 26, 27, 30, 33, 34, 36, 38, 41, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 76, 77, 80, 82, 84, 86, 88, 91, 92, 95, 97, 99, 101, 104, 105, 108, 110, 112, 114, 117, 119, 120, 123, 125, 127, 129, 132, 134, 136
Offset: 1

Views

Author

Clark Kimberling, Mar 08 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

Previous Showing 21-30 of 107 results. Next