cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A340535 Number of domino tilings (or dimer coverings) of the 2n X n grid.

Original entry on oeis.org

1, 1, 5, 41, 2245, 185921, 106912793, 90124167441, 540061286536921, 4652799879944138561, 289415868852204573601981, 25545661075321867247577262777, 16457725663617130715785831809325501, 14905470663149838513993965664256435411841, 99323759360556656337166635121447749135517599089
Offset: 0

Views

Author

Alois P. Heinz, Jan 10 2021

Keywords

Examples

			a(2) = 5:
   .___.   .___.   .___.   .___.   .___.
   |___|   |___|   |___|   | | |   | | |
   |___|   |___|   | | |   |_|_|   |_|_|
   |___|   | | |   |_|_|   |___|   | | |
   |___|   |_|_|   |___|   |___|   |_|_|
.
		

Crossrefs

Programs

  • Maple
    b:= proc(m, n) option remember; local i, j, t, M;
           M:= Matrix(n*m, shape=skewsymmetric);
           for i to n do for j to m do t:= (i-1)*m+j;
              if j b(2*n, n):
    seq(a(n), n=0..15);
  • Mathematica
    T[?OddQ, ?OddQ] = 0;
    T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
    a[n_] := T[2n, n] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2022 *)

Formula

a(n) = A187596(2n,n) = A187596(n,2n) = A187616(2n,n).
a(n) = A099390(2n,n) = A099390(n,2n) for n >= 1.

A347054 Number of domino tilings of a 32 X n rectangle.

Original entry on oeis.org

1, 1, 3524578, 1117014753, 170220478472105, 224916047725262248, 12348080425980866090537, 30648981125778378496845537, 1010618564986361239515088848178, 3596059736380751648485086101179655, 87171995375835553001398855677616476448, 391978133958466896956216157693001644153072
Offset: 0

Views

Author

A. M. Magomedov and Serge Lawrencenko, Aug 14 2021

Keywords

Comments

It is known that the number of domino tilings of an m X n rectangle is equal to the number of perfect matchings in the m X n grid graph.

References

  • A. M. Magomedov, T. A. Magomedov, S. A. Lawrencenko, Mutually-recursive formulas for enumerating partitions of the rectangle, [in Russian, English summary], Prikl. Diskretn. Mat., 46 (2019), 108-121. DOI: 10.17223/20710410/46/9
  • A. M. Magomedov and S. A. Lavrenchenko, Computational aspects of the partition enumeration problem, [in Russian, English summary], Dagestan Electronic Mathematical Reports, 14 (2020), 1-21. DOI: 10.31029/demr.14.1

Crossrefs

Column n=32 of A187596.

Programs

  • Mathematica
    Do[ P=1;
    Do[P=P*4*(Cos[Pi*i/(n+1)]^2+Cos[Pi*j/33]^2), {i,1,n/2}, {j,1,16}];
    Print["n=", n ,":", Round[P]], {n,1,11000}]

Formula

a(n) = Product_{j=1..16} (Product_{k=1..floor(n/2)}(4*(cos(j*Pi/33))^2+ 4*(cos(k*Pi/(n+1)))^2)) (special case of the double product formula in A099390).
Previous Showing 11-12 of 12 results.