A188124
Number of strictly increasing arrangements of 5 nonzero numbers in -(n+3)..(n+3) with sum zero.
Original entry on oeis.org
0, 4, 16, 42, 90, 172, 296, 482, 740, 1092, 1554, 2154, 2906, 3846, 4992, 6382, 8038, 10004, 12302, 14984, 18074, 21626, 25670, 30266, 35442, 41266, 47770, 55024, 63064, 71966, 81766, 92548, 104350, 117258, 131316, 146616, 163200, 181168, 200566
Offset: 0
4*x + 16*x^2 + 42*x^3 + 90*x^4 + 172*x^5 + 296*x^6 + 482*x^7 + 740*x^8 + ...
Some solutions for n=6
.-7...-7...-6...-7...-8...-8...-4...-9...-7...-5...-6...-4...-6...-9...-7...-5
.-5...-5...-4...-6...-6...-2...-3...-5...-5...-4...-3...-3...-3...-5...-4...-3
..1....2....2....2....1...-1...-2....1...-4...-2...-2...-2....1....2...-2....1
..5....3....3....5....4....4....4....5....7....4....4....1....2....5....6....3
..6....7....5....6....9....7....5....8....9....7....7....8....6....7....7....4
-
{a(n) = local(v, c, m); m = n+3; forvec( v = vector( 5, i, [-m, m]), if( 0==prod( k=1, 5, v[k]), next); if( 0==sum( k=1, 5, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
A188125
Number of strictly increasing arrangements of 6 nonzero numbers in -(n+4)..(n+4) with sum zero.
Original entry on oeis.org
4, 16, 52, 137, 308, 624, 1154, 1999, 3278, 5144, 7772, 11387, 16230, 22602, 30830, 41303, 54440, 70734, 90706, 114963, 144146, 178984, 220244, 268797, 325548, 391514, 467756, 555449, 655816, 770208, 900020, 1046787, 1212094, 1397668
Offset: 0
4 + 16*x + 52*x^2 + 137*x^3 + 308*x^4 + 624*x^5 + 1154*x^6 + 1999*x^7 + 3278*x^8 + ...
Some solutions for n=6
-10...-8...-7...-8...-8...-9...-9...-9...-9...-7..-10...-9...-7..-10...-9...-9
.-8...-6...-5...-5...-6...-3...-7...-3...-2...-5...-6...-5...-5...-6...-4...-5
.-1....1...-1...-1...-1...-2...-2....1...-1...-2...-2...-1...-1...-2...-2...-4
..4....3....1....1....2....3....3....2....1....1....2....1....3....3....1....3
..7....4....2....3....5....4....5....4....2....4....6....6....4....5....5....6
..8....6...10...10....8....7...10....5....9....9...10....8....6...10....9....9
-
{a(n) = local(v, c, m); m = n+4; forvec( v = vector( 6, i, [-m, m]), if( 0==prod( k=1, 6, v[k]), next); if( 0==sum( k=1, 6, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
A188126
Number of strictly increasing arrangements of 7 nonzero numbers in -(n+5)..(n+5) with sum zero.
Original entry on oeis.org
42, 152, 426, 1032, 2216, 4376, 8044, 13994, 23210, 37030, 57086, 85506, 124816, 178186, 249308, 342708, 463550, 618042, 813186, 1057238, 1359422, 1730468, 2182232, 2728362, 3383832, 4165678, 5092482, 6185216, 7466594, 8962070
Offset: 1
Some solutions for n=6
-10..-10...-6...-7...-6..-11...-8..-10...-8..-11..-10...-9..-11..-11...-9...-9
.-9...-4...-3...-6...-5...-9...-7...-7...-7...-4...-7...-8...-9...-8...-6...-7
.-4...-2...-2...-4...-4...-3...-4...-6...-1...-3...-3...-3...-4...-4...-5...-4
..4....2...-1....1...-1...-1...-3...-1....1...-2...-1...-1....1....3...-4...-2
..5....3....1....3....3....4....5....6....3....1....1....5....2....4....7....4
..6....4....2....6....4....9....6....8....4....8....9....6...10....6....8....8
..8....7....9....7....9...11...11...10....8...11...11...10...11...10....9...10
A188127
Number of strictly increasing arrangements of 8 nonzero numbers in -(n+6)..(n+6) with sum zero.
Original entry on oeis.org
137, 484, 1398, 3528, 7970, 16547, 32035, 58595, 102113, 170844, 275878, 432018, 658432, 979785, 1427065, 2039067, 2863403, 3958322, 5393994, 7254686, 9640296, 12669003, 16479033, 21231771, 27113883, 34340884, 43159574, 53852210, 66739242
Offset: 1
Some solutions for n=6
-12..-11..-12...-8..-10..-12...-9..-10...-6..-12...-8..-10..-12..-10..-12..-11
.-9..-10...-7...-7...-7..-11...-8...-8...-5...-9...-7...-6...-4...-8...-9...-7
.-8...-2...-6...-4...-4...-3...-7...-7...-2...-3...-3...-3...-3...-5...-7...-5
.-2....1...-2...-3...-3...-2...-6...-5...-1...-2...-1...-1....1...-3....2...-4
..5....2...-1....3...-2....1....1....4....1....1....1....1....2....1....4...-2
..7....3....5....4....5....4....6....7....2....4....3....2....3....5....5....8
..9....5...11....7...10...11...11....8....5...10....4....5....6....8....7....9
.10...12...12....8...11...12...12...11....6...11...11...12....7...12...10...12
Comments