cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A188180 Number of strictly increasing arrangements of n numbers in -(n+6)..(n+6) with sum zero.

Original entry on oeis.org

1, 8, 41, 207, 967, 4370, 19138, 81805, 343363, 1421530, 5820904, 23626234, 95220378, 381577586, 1521967986, 6047272980, 23951790860, 94618944122, 372969633775, 1467518524851, 5765549295661, 22623246705372, 88678543148354
Offset: 1

Views

Author

R. H. Hardin Mar 23 2011

Keywords

Comments

Column 8 of A188181

Examples

			Some solutions for n=5
.-5...-7...-6...-9..-11...-8...-9...-8...-9..-10...-6..-10...-6...-8...-6...-8
.-2...-6...-3...-5...-3...-7...-2...-7...-6...-7...-5...-4...-4...-7...-1...-1
.-1...-3....1....0...-1....4....2...-2...-5....0...-2....2...-2....0....0....0
..3....5....3....6....7....5....3....7....9....6....3....4....4....4....1....1
..5...11....5....8....8....6....6...10...11...11...10....8....8...11....6....8
		

A188182 Number of strictly increasing arrangements of 4 numbers in -(n+2)..(n+2) with sum zero.

Original entry on oeis.org

5, 12, 24, 43, 69, 104, 150, 207, 277, 362, 462, 579, 715, 870, 1046, 1245, 1467, 1714, 1988, 2289, 2619, 2980, 3372, 3797, 4257, 4752, 5284, 5855, 6465, 7116, 7810, 8547, 9329, 10158, 11034, 11959, 12935, 13962, 15042, 16177, 17367, 18614, 19920, 21285
Offset: 1

Views

Author

R. H. Hardin Mar 23 2011

Keywords

Comments

Row 4 of A188181

Examples

			Some solutions for n=5
.-6...-7...-6...-5...-3...-7...-4...-5...-4...-5...-6...-2...-6...-6...-7...-4
.-4....0...-1...-4....0...-1...-3...-3...-2...-2...-5...-1...-3...-3....0...-3
..3....1....3....4....1....2....0....1....2....2....5....0....3....2....3....1
..7....6....4....5....2....6....7....7....4....5....6....3....6....7....4....6
		

Formula

Empirical: a(n)=3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+3*a(n-5)-a(n-6).
Empirical: a(n) = (n+1)*(4*n^2+17*n+22)/18 -2 *A049347(n)/9; g.f. -x*(-5+3*x-3*x^2+3*x^3-3*x^4+x^5) / ( (1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Mar 26 2011

A188184 Number of strictly increasing arrangements of 6 numbers in -(n+4)..(n+4) with sum zero.

Original entry on oeis.org

32, 94, 227, 480, 920, 1636, 2739, 4370, 6698, 9926, 14293, 20076, 27594, 37212, 49341, 64444, 83036, 105690, 133037, 165772, 204654, 250510, 304239, 366814, 439284, 522780, 618513, 727782, 851974, 992568, 1151137, 1329352, 1528984
Offset: 1

Views

Author

R. H. Hardin Mar 23 2011

Keywords

Comments

Row 6 of A188181

Examples

			Some solutions for n=5
.-7...-9...-6...-4...-8...-7...-7...-6...-7...-6...-8...-9...-6...-6...-9...-8
.-5...-5...-4...-2...-6...-5...-2...-5...-3...-3...-3...-2...-3...-5...-6...-3
.-4....1...-1...-1....1...-4...-1...-2....0...-2...-2....0...-2...-4....1...-1
..2....3....2....1....2....1....0....0....1...-1...-1....2....1....0....3....1
..5....4....4....2....3....7....3....6....3....5....5....4....3....7....4....3
..9....6....5....4....8....8....7....7....6....7....9....5....7....8....7....8
		

Formula

Empirical: a(n)=3*a(n-1)-2*a(n-2)-a(n-3)+2*a(n-5)-a(n-6)-a(n-7)+2*a(n-8)-a(n-10)-2*a(n-11)+3*a(n-12)-a(n-13).
Empirical: G.f. -x*(-32 +2*x -9*x^2 -19*x^3 -28*x^4 +x^5 +5*x^6 -17*x^7 +x^8 +10*x^9 +13*x^10 -23*x^11 +8*x^12) / ( (1+x) *(1+x+x^2) *(x^4+x^3+x^2+x+1) *(x-1)^6 ). - R. J. Mathar, Mar 26 2011

A188186 Number of strictly increasing arrangements of 8 numbers in -(n+6)..(n+6) with sum zero.

Original entry on oeis.org

289, 910, 2430, 5744, 12346, 24591, 46029, 81805, 139143, 227930, 361384, 556834, 836618, 1229093, 1769773, 2502617, 3481445, 4771508, 6451232, 8614108, 11370764, 14851235, 19207395, 24615603, 31279561, 39433366, 49344790, 61318804, 75701312
Offset: 1

Views

Author

R. H. Hardin Mar 23 2011

Keywords

Comments

Row 8 of A188181

Examples

			Some solutions for n=5
.-9..-10..-10...-8..-11...-8...-9..-11...-9..-11..-11...-9..-11..-10..-10...-9
.-8...-8...-9...-7...-3...-5...-8..-10...-8...-7...-5...-7...-4...-9...-9...-7
.-5...-4...-7...-6...-2...-4...-5...-2...-6...-6...-4...-5...-3...-7...-7...-4
.-1....1....0...-2...-1...-3...-4....1...-1...-3...-3...-2...-2...-1....0...-1
..1....2....2....0....1....0...-2....2....3....2....0....0....2....4....4....0
..3....5....6....5....3....5....7....3....4....6....4....3....5....5....5....2
..9....6....8....7....5....6...10....6....7....9....8....9....6....7....6....9
.10....8...10...11....8....9...11...11...10...10...11...11....7...11...11...10
		

Formula

Empirical: a(n)=3*a(n-1)-2*a(n-2)-3*a(n-4)+4*a(n-5)-3*a(n-8)+3*a(n-9)-a(n-11)-a(n-12)+3*a(n-14)-3*a(n-15)+4*a(n-18)-3*a(n-19)-2*a(n-21)+3*a(n-22)-a(n-23).
Empirical: G.f. -x*(-289 -43*x -278*x^2 -274*x^3 -841*x^4 -615*x^5 -598*x^6 -412*x^7 -715*x^8 -363*x^9 -163*x^10 -72*x^11 -98*x^12 -200*x^13 +217*x^14 -5*x^15 -49*x^16 -253*x^17 +221*x^18 +23*x^19 +108*x^20 -206*x^21 +73*x^22) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(1+x+x^2)^2 *(x-1)^8 ). - R. J. Mathar, Mar 26 2011

A331545 Triangle of constant term of the symmetric q-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 0, 4, 0, 8, 0, 4, 0, 1, 1, 1, 4, 8, 12, 12, 8, 4, 1, 1, 1, 0, 5, 0, 18, 0, 18, 0, 5, 0, 1, 1, 1, 5, 13, 24, 32, 32, 24, 13, 5, 1, 1, 1, 0, 6, 0, 33
Offset: 0

Views

Author

Michael Somos, Jan 19 2020

Keywords

Comments

Symmetric q-binomial coefficients are based on symmetric q-numbers [n] := (q^n-1/q^n)/(q-1/q).

Examples

			Triangle begins:
  n\k| 0 1 2 3 4 5 6 7  ...
  ---+----------------
   0 | 1
   1 | 1 1
   2 | 1 0 1
   3 | 1 1 1 1
   4 | 1 0 2 0 1
   5 | 1 1 2 2 1 1
   6 | 1 0 3 0 3 0 1
   7 | 1 1 3 5 5 3 1 1
   ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := Coefficient[ QBinomial[ n, k, x^2] / x^(k (n - k)) // FunctionExpand // Expand, x, 0];
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( prod(j = 1, k, (x^(n+1-j) - x^(-n-1+j))/(x^j - x^(-j))), 0))};

Formula

T(2*n, 2*k+1) = 0. T(2*n+1, 3) = A000982(n). T(2*n+1, 5) = A001973(n) if n>=2. T(4*n, 2*n) = A063074(n).
Previous Showing 11-15 of 15 results.