A188864
Number of n X 7 binary arrays without the pattern 0 1 diagonally, vertically or antidiagonally.
Original entry on oeis.org
128, 577, 1220, 1931, 2658, 3387, 4116, 4845, 5574, 6303, 7032, 7761, 8490, 9219, 9948, 10677, 11406, 12135, 12864, 13593, 14322, 15051, 15780, 16509, 17238, 17967, 18696, 19425, 20154, 20883, 21612, 22341, 23070, 23799, 24528, 25257, 25986, 26715
Offset: 1
Some solutions for 3 X 7:
..1..1..1..1..1..1..1....1..1..1..1..1..1..1....1..1..1..1..1..1..1
..1..1..1..1..1..1..1....1..1..0..1..1..1..1....1..1..1..1..1..1..1
..1..1..1..1..1..1..0....0..0..0..0..0..1..1....1..1..0..0..1..1..1
A296449
Triangle I(m,n) read by rows: number of perfect lattice paths on the m*n board.
Original entry on oeis.org
1, 2, 4, 3, 7, 17, 4, 10, 26, 68, 5, 13, 35, 95, 259, 6, 16, 44, 122, 340, 950, 7, 19, 53, 149, 421, 1193, 3387, 8, 22, 62, 176, 502, 1436, 4116, 11814, 9, 25, 71, 203, 583, 1679, 4845, 14001, 40503, 10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 11, 31, 89, 257, 745, 2165, 6303, 18375, 53625, 156629, 457795
Offset: 1
Triangle begins:
1;
2, 4;
3, 7, 17;
4, 10, 26, 68;
5, 13, 35, 95, 259;
6, 16, 44, 122, 340, 950;
7, 19, 53, 149, 421, 1193, 3387;
8, 22, 62, 176, 502, 1436, 4116, 11814;
9, 25, 71, 203, 583, 1679, 4845, 14001, 40503;
10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946;
-
Inm := proc(n,m)
if m >= n then
(n+2)*3^(n-2)+(m-n)*add(A005773(i)*A005773(n-i),i=0..n-1)
+2*add((n-k-2)*3^(n-k-3)*A001006(k),k=0..n-3) ;
else
0 ;
end if;
end proc:
for m from 1 to 13 do
for n from 1 to m do
printf("%a,",Inm(n,m)) ;
end do:
printf("\n") ;
end do:
# Second program:
A296449row := proc(n) local gf, ser;
gf := n -> 1 + (x*(n - (3*n + 2)*x) + (2*x^2)*(1 +
ChebyshevU(n - 1, (1 - x)/(2*x))) / ChebyshevU(n, (1 - x)/(2*x)))/(1 - 3*x)^2;
ser := n -> series(expand(gf(n)), x, n + 1);
seq(coeff(ser(n), x, k), k = 1..n) end:
for n from 0 to 11 do A296449row(n) od; # Peter Luschny, Sep 07 2021
-
(* b = A005773 *) b[0] = 1; b[n_] := Sum[k/n*Sum[Binomial[n, j] * Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
(* c = A001006 *) c[0] = 1; c[n_] := c[n] = c[n-1] + Sum[c[k] * c[n-2-k], {k, 0, n-2}];
Inm[n_, m_] := If[m >= n, (n + 2)*3^(n - 2) + (m - n)*Sum[b[i]*b[n - i], {i, 0, n - 1}] + 2*Sum[(n - k - 2)*3^(n - k - 3)*c[k], {k, 0, n-3}], 0];
Table[Inm[n, m], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 23 2018, adapted from first Maple program. *)
Comments