cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A191130 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x+2 are in a.

Original entry on oeis.org

1, 3, 6, 9, 14, 18, 26, 27, 38, 42, 54, 58, 74, 78, 81, 106, 110, 114, 126, 154, 162, 170, 174, 218, 222, 234, 243, 298, 314, 318, 326, 330, 342, 378, 426, 442, 458, 462, 486, 506, 510, 522, 618, 650, 654, 666, 682, 698, 702, 729, 874, 890, 894, 938, 942, 954, 974, 978, 990, 1026, 1134, 1194, 1258, 1274, 1278, 1306, 1322, 1326
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191130 n = a191130_list !! (n-1)
    a191130_list = f $ singleton 1
       where f s = m : (f $ insert (3*m) $ insert (4*m+2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 0; j = 4; k = 2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191130 *)
    b = a/3; c = (a - 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191184 *)
    e = Intersection[c, r] (* A191185 *)

A191133 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x-2 are in a.

Original entry on oeis.org

1, 2, 4, 6, 7, 13, 14, 19, 22, 26, 40, 43, 50, 54, 58, 67, 74, 79, 86, 102, 121, 130, 151, 158, 163, 170, 175, 198, 202, 214, 223, 230, 238, 259, 266, 294, 307, 314, 342, 364, 391, 406, 454, 475, 482, 490, 511, 518, 526, 595, 602, 607, 630, 643, 650, 670, 678, 691, 698, 715, 778, 790, 799, 806, 854, 883, 890, 918, 922, 943, 950
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191133 n = a191133_list !! (n-1)
    a191133_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+1) $ insert (4*m-2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = -2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191133 *)
    b = (a - 1)/3; c = (a + 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191190 *)
    e = Intersection[c, r] (* A191191 *)

A191134 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x-1 are in a.

Original entry on oeis.org

1, 3, 4, 10, 11, 13, 15, 31, 34, 39, 40, 43, 46, 51, 59, 94, 103, 118, 121, 123, 130, 135, 139, 154, 155, 159, 171, 178, 183, 203, 235, 283, 310, 355, 364, 370, 375, 391, 406, 411, 418, 463, 466, 471, 478, 483, 491, 514, 519, 535, 539, 550, 555, 610, 615, 619, 635, 683, 706, 711, 731, 811, 850, 931, 939, 1066, 1093, 1111, 1126
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A101113/

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191134 n = a191134_list !! (n-1)
    a191134_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+1) $ insert (4*m-1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = -1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191134 *)
    b = (a - 1)/3; c = (a + 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191192 *)
    e = Intersection[c, r] (* A191193 *)

A191137 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x+2 are in a.

Original entry on oeis.org

1, 4, 6, 13, 18, 19, 26, 40, 54, 55, 58, 74, 78, 79, 106, 121, 162, 163, 166, 175, 218, 222, 223, 234, 235, 238, 298, 314, 318, 319, 364, 426, 486, 487, 490, 499, 526, 650, 654, 655, 666, 667, 670, 702, 703, 706, 715, 874, 890, 894, 895, 938, 942, 943, 954, 955, 958, 1093, 1194, 1258, 1274, 1278, 1279, 1458, 1459, 1462, 1471
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191137 n = a191137_list !! (n-1)
    a191137_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+1) $ insert (4*m+2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = 2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191137 *)
    b = (a - 1)/3; c = (a - 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191198 *)
    e = Intersection[c, r] (* A191199 *)

A191140 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x-2 are in a.

Original entry on oeis.org

1, 2, 5, 6, 8, 17, 18, 20, 22, 26, 30, 53, 56, 62, 66, 68, 70, 78, 80, 86, 92, 102, 118, 161, 170, 188, 200, 206, 210, 212, 222, 236, 242, 246, 260, 262, 270, 278, 308, 310, 318, 342, 356, 366, 406, 470, 485, 512, 566, 602, 620, 632, 638, 642, 668, 678, 710, 728, 740, 750, 782, 788, 798, 812, 822, 836, 838, 846, 886, 926, 932, 942
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191140 n = a191140_list !! (n-1)
    a191140_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+2) $ insert (4*m-2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = -2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191140 *)
    b = (a - 2)/3; c = (a + 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191204 *)
    e = Intersection[c, r] (* A191205 *)

A191141 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x-1 are in a.

Original entry on oeis.org

1, 3, 5, 11, 17, 19, 35, 43, 53, 59, 67, 75, 107, 131, 139, 161, 171, 179, 203, 211, 227, 235, 267, 299, 323, 395, 419, 427, 485, 515, 523, 539, 555, 611, 635, 643, 683, 707, 715, 803, 811, 843, 899, 907, 939, 971, 1067, 1187, 1195, 1259, 1283, 1291, 1457, 1547, 1571, 1579, 1619, 1667, 1675, 1707, 1835, 1907, 1931, 1939, 2051
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191141 n = a191141_list !! (n-1)
    a191141_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+2) $ insert (4*m-1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = -1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191141 *)
    b = (a - 2)/3; c = (a + 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191206 *)
    e = Intersection[c, r] (* A191207 *)

A191142 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x are in a.

Original entry on oeis.org

1, 4, 5, 14, 16, 17, 20, 44, 50, 53, 56, 62, 64, 68, 80, 134, 152, 161, 170, 176, 188, 194, 200, 206, 212, 224, 242, 248, 256, 272, 320, 404, 458, 485, 512, 530, 536, 566, 584, 602, 608, 620, 638, 644, 674, 680, 704, 728, 746, 752, 770, 776, 800, 818, 824, 848, 896, 962, 968, 992, 1024, 1088, 1214, 1280, 1376, 1457, 1538, 1592
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191142 n = a191142_list !! (n-1)
    a191142_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+2) $ insert (4*m) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = 0; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191142 *)
    b = (a - 2)/3; c = a/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191208 *)
    e = Intersection[c, r] (* A191209 *)

A191143 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x+1 are in a.

Original entry on oeis.org

1, 5, 17, 21, 53, 65, 69, 85, 161, 197, 209, 213, 257, 261, 277, 341, 485, 593, 629, 641, 645, 773, 785, 789, 833, 837, 853, 1025, 1029, 1045, 1109, 1365, 1457, 1781, 1889, 1925, 1937, 1941, 2321, 2357, 2369, 2373, 2501, 2513, 2517, 2561, 2565, 2581, 3077, 3089, 3093, 3137, 3141, 3157, 3329, 3333, 3349, 3413, 4097, 4101
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191143 n = a191143_list !! (n-1)
    a191143_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+2) $ insert (4*m+1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = 1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191143 *)
    b = (a - 2)/3; c = (a - 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191210 *)
    e = Intersection[c, r] (* A191136 *)
    m = (a + 1)/2 (* divisibility property *)
    p = (a + 3)/4 (* divisibility property *)

A191144 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x+2 are in a.

Original entry on oeis.org

1, 5, 6, 17, 20, 22, 26, 53, 62, 68, 70, 80, 82, 90, 106, 161, 188, 206, 212, 214, 242, 248, 250, 272, 274, 282, 320, 322, 330, 362, 426, 485, 566, 620, 638, 644, 646, 728, 746, 752, 754, 818, 824, 826, 848, 850, 858, 962, 968, 970, 992, 994, 1002, 1088, 1090, 1098, 1130, 1280, 1282, 1290, 1322, 1450, 1457, 1700, 1706, 1862
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191144 n = a191144_list !! (n-1)
    a191144_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+2) $ insert (4*m+2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = 2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191144 *)
    b = (a - 2)/3; c = (a - 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191212 *)
    e = Intersection[c, r] (* A191213 *)

A191115 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x are in a.

Original entry on oeis.org

1, 4, 10, 16, 28, 40, 46, 64, 82, 112, 118, 136, 160, 184, 190, 244, 256, 328, 334, 352, 406, 448, 472, 478, 544, 550, 568, 640, 730, 736, 760, 766, 976, 982, 1000, 1024, 1054, 1216, 1312, 1336, 1342, 1408, 1414, 1432, 1624, 1630, 1648, 1702, 1792, 1888, 1912, 1918, 2176, 2188, 2200, 2206, 2272, 2278, 2296, 2560, 2920
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191115 n = a191115_list !! (n-1)
    a191115_list = 1 : f (singleton 4)
       where f s = m : (f $ insert (3*m-2) $ insert (4*m) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -2; j = 4; k = 0; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191115 *)
    b = (a + 2)/3; c = a/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191113 *)
    e = Intersection[c, r] (* A191154 *)
    m = a/2 (* divisibility property *)
Previous Showing 21-30 of 80 results. Next