A193971 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=x*p(n-1,x)+n+1 with p(0,x)=1, and q(n,x)=(x+1)^n.
2, 3, 5, 4, 11, 9, 5, 19, 26, 14, 6, 29, 55, 50, 20, 7, 41, 99, 125, 85, 27, 8, 55, 161, 259, 245, 133, 35, 9, 71, 244, 476, 574, 434, 196, 44, 10, 89, 351, 804, 1176, 1134, 714, 276, 54, 11, 109, 485, 1275, 2190, 2562, 2058, 1110, 375, 65, 12, 131, 649, 1925
Offset: 0
Examples
First six rows: 2 3...5 4...11....9 5...19...26...14 6...29...55...50...20 7...41...99...125..85...27
Programs
-
Maple
# The function 'fission' is defined in A193842. p := (n,x) -> `if`(n=0,1,x*p(n-1,x)+n+1); q := (n,x) -> (x+1)^n; A193971_row := n -> fission(p, q, n); for n from 0 to 5 do A193971_row(n) od; # Peter Luschny, Jul 23 2014
-
Mathematica
z = 11; p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 1; q[n_, x_] := (x + 1)^n p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193971 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193972 *)
-
Sage
# uses[fission from A193842] p = lambda n,x: x*p(n-1,x)+n+1 if n > 0 else 1 q = lambda n,x: (x+1)^n A193971_row = lambda n: fission(p, q, n); for n in range(7): A193971_row(n) # Peter Luschny, Jul 23 2014
Comments