cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 94 results. Next

A195361 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(2,5,sqrt(29)).

Original entry on oeis.org

2, 2, 8, 3, 7, 2, 1, 8, 3, 0, 7, 4, 7, 7, 5, 7, 0, 5, 5, 9, 5, 0, 4, 1, 0, 0, 4, 2, 3, 0, 9, 5, 6, 3, 5, 4, 4, 6, 2, 6, 9, 9, 7, 5, 3, 5, 0, 9, 2, 0, 3, 8, 0, 4, 3, 2, 8, 6, 2, 7, 3, 9, 2, 5, 4, 1, 4, 7, 7, 5, 1, 9, 1, 8, 6, 1, 7, 4, 8, 0, 2, 7, 3, 1, 0, 4, 4, 3, 0, 2, 5, 9, 0, 6, 3, 3, 9, 3, 6, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(C)=2.2837218307477570559504100423095635446269975...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 2; b = 5; c = Sqrt[29]; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195359 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195360 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195361 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I)  A195362 *)

A195362 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 2,5,sqrt(29) right triangle ABC.

Original entry on oeis.org

4, 7, 4, 6, 2, 8, 7, 7, 4, 7, 5, 8, 4, 2, 7, 0, 5, 1, 6, 4, 7, 1, 1, 9, 3, 1, 1, 3, 9, 9, 5, 1, 6, 6, 8, 0, 4, 8, 7, 6, 6, 6, 3, 6, 8, 5, 9, 7, 0, 9, 3, 2, 6, 8, 8, 7, 1, 3, 8, 9, 6, 7, 5, 8, 4, 3, 8, 6, 6, 8, 5, 9, 6, 5, 5, 7, 5, 2, 0, 7, 3, 2, 7, 5, 7, 2, 8, 8, 3, 5, 4, 7, 1, 9, 8, 2, 9, 4, 9, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.4746287747584270516471193113995166804876...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 2; b = 5; c = Sqrt[29]; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195359 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195360 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195361 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I)  A195362 *)

A195365 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

Original entry on oeis.org

9, 6, 6, 2, 7, 3, 9, 6, 1, 5, 7, 6, 7, 1, 2, 9, 5, 7, 2, 0, 9, 3, 8, 8, 6, 4, 9, 0, 0, 9, 2, 1, 2, 4, 8, 1, 6, 3, 4, 4, 4, 6, 9, 2, 6, 1, 3, 1, 5, 3, 9, 1, 4, 2, 4, 2, 6, 3, 4, 9, 7, 1, 5, 7, 5, 1, 3, 2, 2, 7, 8, 5, 0, 7, 6, 4, 4, 7, 6, 0, 1, 3, 2, 0, 4, 7, 0, 9, 0, 0, 1, 3, 2, 9, 1, 2, 4, 2, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(A)=0.96627396157671295720938864900921248163444...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195365 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195366 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195367 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]     (* Philo(ABC,I) A195368 *)

A195366 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

Original entry on oeis.org

1, 0, 0, 7, 4, 6, 3, 7, 4, 8, 0, 3, 0, 0, 5, 1, 5, 9, 4, 2, 9, 2, 1, 1, 8, 8, 4, 0, 2, 6, 7, 0, 6, 6, 1, 8, 1, 5, 8, 0, 2, 2, 0, 5, 4, 3, 3, 8, 2, 5, 6, 7, 3, 4, 0, 1, 3, 7, 1, 2, 8, 8, 4, 0, 9, 4, 8, 0, 1, 7, 9, 2, 9, 6, 1, 7, 9, 3, 4, 2, 6, 5, 0, 5, 1, 2, 8, 2, 9, 8, 5, 7, 3, 6, 4, 7, 6, 6, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(B)=1.007463748030051594292118840267066181580...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195365 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195366 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195367 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195368 *)

A195367 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

Original entry on oeis.org

1, 2, 8, 7, 2, 1, 2, 0, 8, 2, 6, 1, 4, 7, 9, 8, 7, 6, 6, 1, 9, 8, 3, 9, 0, 5, 3, 0, 2, 7, 3, 1, 7, 2, 8, 5, 8, 2, 4, 6, 3, 9, 2, 3, 4, 1, 3, 3, 1, 4, 5, 3, 3, 0, 1, 5, 7, 5, 1, 8, 7, 7, 1, 4, 4, 5, 8, 3, 6, 5, 9, 3, 8, 8, 1, 8, 0, 7, 6, 8, 0, 5, 1, 9, 5, 6, 1, 1, 3, 2, 4, 7, 2, 5, 3, 3, 9, 9, 3, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(C)=1.2872120826147987661983905302731728582463923413314...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195365 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195366 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195367 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195368 *)

A195368 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a sqrt(2),sqrt(3),sqrt(5) right triangle ABC.

Original entry on oeis.org

6, 0, 5, 8, 6, 1, 8, 4, 2, 3, 6, 1, 2, 3, 9, 9, 3, 3, 8, 5, 6, 6, 2, 4, 1, 9, 1, 1, 1, 8, 2, 7, 5, 0, 7, 5, 0, 6, 7, 8, 1, 8, 6, 5, 3, 3, 5, 1, 4, 6, 6, 2, 8, 3, 1, 7, 5, 5, 5, 7, 8, 8, 3, 5, 9, 2, 6, 5, 2, 2, 7, 9, 1, 0, 0, 9, 3, 2, 5, 7, 1, 0, 0, 5, 4, 5, 1, 7, 1, 6, 1, 1, 5, 9, 4, 0, 2, 1, 6, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 16 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.6058618423612399338566241911182750750678...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195365 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195366 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195367 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195368 *)

A195369 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).

Original entry on oeis.org

7, 1, 5, 7, 9, 0, 1, 3, 5, 9, 8, 9, 9, 1, 4, 9, 5, 4, 5, 9, 5, 4, 9, 2, 6, 7, 2, 3, 3, 3, 4, 3, 2, 4, 9, 4, 5, 6, 6, 3, 6, 8, 3, 0, 6, 5, 6, 7, 0, 5, 1, 1, 4, 4, 1, 8, 8, 8, 6, 9, 2, 2, 0, 1, 8, 3, 4, 5, 3, 8, 4, 6, 2, 9, 2, 9, 5, 3, 1, 9, 3, 5, 2, 3, 4, 0, 5, 2, 5, 0, 1, 4, 2, 2, 0, 5, 7, 7, 6, 9
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(A)=0.7157901359899149545954926723334324945663...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = Sqrt[2]; c = Sqrt[3];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195369 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195370 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195371 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195372 *)

A195370 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).

Original entry on oeis.org

7, 6, 8, 1, 3, 7, 4, 3, 2, 6, 1, 5, 5, 3, 6, 7, 6, 0, 7, 0, 1, 5, 3, 4, 5, 2, 1, 1, 1, 9, 2, 8, 7, 9, 5, 5, 0, 9, 2, 6, 7, 1, 9, 8, 8, 4, 5, 0, 7, 8, 6, 7, 6, 3, 0, 3, 4, 0, 7, 8, 5, 3, 7, 8, 0, 6, 5, 4, 5, 6, 6, 3, 0, 0, 7, 0, 5, 7, 3, 9, 6, 9, 0, 4, 7, 0, 2, 3, 1, 0, 7, 9, 2, 1, 7, 7, 0, 7, 3, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(B)=0.76813743261553676070153452111928795509267198845...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = Sqrt[2]; c = Sqrt[3];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195369 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195370 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195371 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195372 *)

A195371 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).

Original entry on oeis.org

9, 6, 4, 7, 2, 3, 8, 1, 9, 5, 8, 9, 9, 1, 6, 9, 5, 0, 6, 0, 4, 4, 0, 4, 6, 4, 9, 5, 0, 3, 8, 0, 6, 6, 8, 6, 6, 0, 3, 7, 2, 4, 3, 9, 4, 7, 2, 0, 2, 7, 7, 9, 4, 4, 7, 4, 3, 9, 8, 7, 1, 7, 0, 7, 3, 9, 7, 7, 2, 1, 0, 1, 0, 0, 4, 7, 9, 2, 0, 1, 2, 3, 1, 0, 5, 2, 8, 1, 0, 1, 2, 2, 3, 0, 0, 1, 3, 3, 7, 9
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(C)=0.96472381958991695060440464950380668660...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = Sqrt[2]; c = Sqrt[3];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195369 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195370 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195371 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195372 *)

A195372 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,sqrt(2),sqrt(3) right triangle ABC.

Original entry on oeis.org

5, 9, 0, 5, 6, 8, 0, 8, 0, 0, 1, 5, 9, 9, 7, 1, 3, 4, 3, 7, 4, 7, 0, 4, 6, 4, 4, 1, 6, 4, 6, 5, 0, 5, 6, 6, 9, 4, 4, 1, 0, 3, 2, 9, 4, 1, 9, 3, 4, 2, 2, 8, 8, 8, 7, 8, 2, 6, 1, 4, 8, 0, 1, 3, 7, 9, 5, 6, 6, 0, 0, 7, 2, 4, 2, 4, 6, 8, 5, 7, 1, 9, 9, 1, 0, 8, 4, 5, 3, 9, 5, 3, 6, 8, 5, 5, 6, 5, 0, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.590568080015997134374704644164650566944103294...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = Sqrt[2]; c = Sqrt[3];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195369 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195370 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195371 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (* Philo(ABC,I) A195372 *)
Previous Showing 21-30 of 94 results. Next