cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 94 results. Next

A195381 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).

Original entry on oeis.org

1, 3, 2, 3, 1, 6, 9, 0, 7, 6, 4, 9, 9, 2, 1, 4, 9, 9, 5, 4, 0, 3, 0, 7, 3, 6, 2, 4, 7, 3, 5, 2, 1, 7, 4, 8, 9, 9, 9, 5, 4, 9, 4, 0, 5, 6, 1, 3, 9, 5, 5, 1, 0, 5, 7, 5, 7, 9, 8, 4, 7, 1, 7, 2, 2, 4, 2, 3, 1, 5, 9, 5, 8, 7, 8, 9, 4, 2, 1, 0, 7, 7, 7, 2, 4, 1, 5, 1, 1, 8, 3, 4, 1, 3, 0, 7, 2, 2, 0, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(A)=1.32316907649921499540307362473521748999...
		

Crossrefs

Programs

  • Magma
    Sqrt(12) / ((1 + Sqrt(5)) / 2)^2; // Vincenzo Librandi, Nov 15 2018
  • Mathematica
    a = 2; b = Sqrt[5]; c = 3; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195381 *)
    N[x2, 100]
    RealDigits[%]   (* (B) A195383 *)
    N[x3, 100]
    RealDigits[%]   (* (C) A195384 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195385 *)
    RealDigits[Sqrt[12] / ((1 + Sqrt[5]) / 2)^2, 10, 100] (* Vincenzo Librandi, Nov 15 2018 *)

Formula

Equals sqrt(12)/phi^2, where phi = A001622. - Jon Maiga, Nov 14 2018

A195383 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).

Original entry on oeis.org

1, 3, 5, 4, 0, 4, 4, 6, 2, 7, 7, 7, 2, 8, 4, 5, 8, 7, 1, 2, 8, 3, 3, 4, 4, 5, 0, 9, 1, 0, 4, 2, 8, 7, 1, 2, 4, 0, 6, 0, 4, 5, 8, 0, 9, 0, 6, 6, 0, 7, 0, 3, 6, 1, 9, 9, 7, 8, 9, 0, 3, 6, 6, 7, 7, 8, 5, 9, 7, 3, 8, 2, 3, 2, 1, 1, 8, 6, 9, 5, 5, 8, 9, 3, 8, 1, 4, 2, 5, 6, 0, 7, 7, 6, 8, 9, 8, 9, 8, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(B)=1.354044627772845871283344509104287124060458090...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 2; b = Sqrt[5]; c = 3; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195381 *)
    N[x2, 100]
    RealDigits[%]   (* (B) A195383 *)
    N[x3, 100]
    RealDigits[%]   (* (C) A195384 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195385 *)

A195384 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).

Original entry on oeis.org

1, 7, 4, 8, 0, 6, 4, 0, 9, 7, 7, 9, 5, 2, 8, 4, 2, 8, 3, 1, 9, 7, 2, 0, 4, 8, 2, 0, 2, 2, 3, 0, 2, 0, 4, 5, 5, 1, 4, 9, 8, 8, 3, 2, 6, 3, 9, 4, 8, 2, 6, 8, 7, 5, 3, 6, 8, 0, 8, 2, 5, 1, 1, 4, 8, 0, 1, 8, 6, 1, 9, 6, 0, 1, 7, 7, 1, 3, 1, 1, 8, 2, 4, 9, 3, 8, 6, 0, 5, 7, 4, 0, 5, 1, 6, 5, 8, 7, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(C)=1.74806409779528428319720482022302045514988...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 2; b = Sqrt[5]; c = 3; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195381 *)
    N[x2, 100]
    RealDigits[%]   (* (B) A195383 *)
    N[x3, 100]
    RealDigits[%]   (* (C) A195384 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195385 *)

A195385 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 2,sqrt(5),3 right triangle ABC.

Original entry on oeis.org

6, 1, 1, 5, 5, 8, 3, 5, 1, 2, 7, 9, 6, 6, 4, 1, 3, 0, 6, 5, 6, 7, 7, 9, 3, 2, 2, 4, 2, 8, 8, 4, 4, 3, 2, 7, 0, 7, 7, 7, 0, 6, 7, 2, 5, 0, 0, 1, 8, 5, 3, 0, 9, 3, 1, 9, 2, 6, 0, 2, 3, 8, 0, 2, 9, 1, 7, 4, 6, 7, 0, 8, 6, 0, 9, 1, 9, 8, 1, 4, 4, 8, 1, 2, 6, 1, 1, 2, 9, 5, 1, 3, 1, 2, 6, 9, 9, 1, 5, 3, 7, 8, 6, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.6115583512796641306567793224288443270777...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = 2; b = Sqrt[5]; c = 3; f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195381 *)
    N[x2, 100]
    RealDigits[%]   (* (B) A195383 *)
    N[x3, 100]
    RealDigits[%]   (* (C) A195384 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195385 *)

Extensions

a(99) corrected by Georg Fischer, Jul 18 2021

A195386 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

Original entry on oeis.org

1, 0, 4, 5, 8, 3, 1, 3, 7, 9, 9, 7, 9, 9, 5, 5, 8, 7, 4, 9, 4, 8, 7, 2, 0, 5, 7, 5, 7, 0, 3, 4, 1, 1, 6, 8, 1, 4, 2, 4, 8, 5, 2, 0, 4, 7, 4, 4, 8, 0, 2, 4, 4, 0, 9, 4, 4, 5, 3, 8, 9, 4, 5, 8, 9, 0, 4, 0, 7, 2, 1, 2, 7, 2, 0, 5, 8, 6, 7, 2, 9, 0, 3, 5, 6, 3, 1, 8, 0, 3, 1, 7, 9, 4, 4, 5, 7, 4, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(A)=1.0458313799799558749487205757034116814248520474480...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[5]; c = Sqrt[7];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195386 *)
    N[x2, 100]
    RealDigits[%]   (* (A) A195387 *)
    N[x3, 100]
    RealDigits[%]   (* (A) A195388 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195389 *)

A195387 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

Original entry on oeis.org

1, 1, 4, 6, 8, 0, 9, 7, 5, 9, 1, 5, 8, 1, 9, 1, 6, 3, 0, 9, 5, 3, 7, 7, 6, 0, 0, 6, 5, 1, 9, 6, 8, 1, 6, 0, 7, 5, 5, 6, 7, 6, 8, 2, 9, 7, 3, 5, 9, 7, 5, 1, 3, 7, 2, 7, 2, 9, 8, 2, 4, 8, 5, 3, 3, 1, 7, 8, 9, 4, 6, 4, 4, 3, 9, 9, 1, 8, 6, 0, 9, 3, 6, 7, 6, 2, 0, 5, 1, 5, 2, 1, 5, 4, 4, 9, 5, 5, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(B)=1.1468097591581916309537760065196816075567682...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[5]; c = Sqrt[7];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195386 *)
    N[x2, 100]
    RealDigits[%]   (* (A) A195387 *)
    N[x3, 100]
    RealDigits[%]   (* (A) A195388 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195389 *)

A195388 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

Original entry on oeis.org

1, 4, 2, 0, 6, 2, 0, 2, 7, 3, 3, 9, 4, 4, 3, 7, 9, 4, 6, 4, 1, 5, 1, 4, 4, 8, 1, 2, 1, 1, 6, 1, 6, 9, 2, 3, 1, 9, 6, 3, 5, 3, 5, 3, 3, 1, 5, 4, 6, 4, 8, 9, 8, 8, 0, 5, 5, 3, 7, 5, 9, 3, 8, 5, 4, 7, 2, 5, 5, 9, 2, 8, 2, 3, 3, 2, 2, 9, 9, 1, 9, 3, 3, 6, 7, 4, 3, 8, 2, 1, 3, 1, 8, 4, 9, 2, 0, 7, 2, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(C)=1.420620273394437946415144812116169231963535...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[5]; c = Sqrt[7];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195386 *)
    N[x2, 100]
    RealDigits[%]   (* (A) A195387 *)
    N[x3, 100]
    RealDigits[%]   (* (A) A195388 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195389 *)

A195389 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a sqrt(2),sqrt(5),sqrt(7) right triangle ABC.

Original entry on oeis.org

5, 7, 3, 8, 9, 4, 9, 4, 2, 7, 4, 8, 6, 8, 2, 3, 0, 6, 8, 5, 9, 4, 1, 0, 2, 1, 1, 4, 2, 6, 4, 4, 0, 2, 2, 8, 6, 9, 3, 9, 8, 0, 8, 1, 9, 5, 3, 5, 4, 9, 9, 1, 1, 5, 0, 5, 7, 5, 2, 0, 9, 5, 2, 0, 9, 2, 4, 5, 4, 7, 0, 8, 0, 9, 5, 1, 8, 9, 1, 7, 5, 0, 5, 0, 8, 1, 2, 7, 6, 3, 1, 2, 8, 9, 1, 0, 5, 0, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			Philo(ABC,I)=0.5738949427486823068594102114264402286939808...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[2]; b = Sqrt[5]; c = Sqrt[7];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]   (* (A) A195386 *)
    N[x2, 100]
    RealDigits[%]   (* (A) A195387 *)
    N[x3, 100]
    RealDigits[%]   (* (A) A195388 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]   (* Philo(ABC,I) A195389 *)

A195395 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(3),sqrt(5),sqrt(8)).

Original entry on oeis.org

1, 2, 0, 4, 4, 9, 9, 9, 5, 2, 4, 3, 8, 3, 0, 0, 4, 2, 2, 9, 6, 2, 6, 7, 7, 2, 0, 4, 9, 5, 5, 8, 8, 0, 4, 2, 5, 3, 7, 2, 4, 9, 9, 8, 3, 8, 1, 4, 3, 2, 7, 9, 8, 3, 2, 8, 9, 2, 3, 7, 3, 3, 6, 2, 4, 6, 2, 0, 5, 8, 0, 7, 9, 0, 1, 7, 0, 6, 1, 9, 5, 8, 9, 3, 3, 1, 3, 9, 8, 9, 3, 0, 0, 9, 4, 1, 9, 1, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(A)=1.204499952438300422962677204955880425372499...
		

Crossrefs

Programs

  • Mathematica
    a = Sqrt[3]; b = Sqrt[5]; c = Sqrt[8];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195395 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195396 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195397 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (*  Philo(ABC,I) A195398 *)

A195396 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(3),sqrt(5),sqrt(8)).

Original entry on oeis.org

1, 2, 6, 9, 3, 1, 5, 7, 9, 8, 8, 6, 2, 5, 6, 0, 6, 6, 9, 2, 8, 7, 2, 7, 6, 7, 3, 2, 7, 3, 8, 9, 4, 5, 3, 9, 8, 4, 5, 1, 4, 1, 2, 8, 2, 1, 3, 5, 8, 1, 0, 2, 7, 4, 6, 3, 2, 9, 7, 6, 8, 8, 0, 1, 3, 5, 3, 3, 3, 4, 3, 2, 3, 8, 8, 1, 6, 1, 5, 3, 8, 4, 7, 1, 0, 3, 8, 3, 9, 2, 5, 9, 5, 2, 6, 3, 5, 2, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2011

Keywords

Comments

See A195284 for definitions and a general discussion.

Examples

			(B)=1.2693157988625606692872767327389453984514...
		

Crossrefs

Cf. A195284.

Programs

  • Mathematica
    a = Sqrt[3]; b = Sqrt[5]; c = Sqrt[8];
    f = 2 a*b/(a + b + c);
    x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
    x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
    x3 = f*Sqrt[2]
    N[x1, 100]
    RealDigits[%]    (* (A) A195395 *)
    N[x2, 100]
    RealDigits[%]    (* (B) A195396 *)
    N[x3, 100]
    RealDigits[%]    (* (C) A195397 *)
    N[(x1 + x2 + x3)/(a + b + c), 100]
    RealDigits[%]    (*  Philo(ABC,I) A195398 *)
Previous Showing 31-40 of 94 results. Next