cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A359271 Number of odd digits necessary to write all nonnegative n-digit integers.

Original entry on oeis.org

5, 95, 1400, 18500, 230000, 2750000, 32000000, 365000000, 4100000000, 45500000000, 500000000000, 5450000000000, 59000000000000, 635000000000000, 6800000000000000, 72500000000000000, 770000000000000000, 8150000000000000000
Offset: 1

Views

Author

Bernard Schott, Dec 23 2022

Keywords

Examples

			To write the integers from 10 up to 99, each of the digits 1, 3, 5, 7 and 9, must be used 19 times, hence a(2) = 19*5 = 95.
		

Crossrefs

Programs

  • Maple
    seq(5 * (9*n+1) * 10^(n-2), n=1..18);
  • Mathematica
    a[n_] := 5*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Dec 23 2022 *)

Formula

a(n) = 5 * (9*n+1) * 10^(n-2).
a(n) = A279766(10^n-1) - A279766(10^(n-1)-1).
a(n) = A113119(n) - A358439(n).
From Stefano Spezia, Dec 24 2022: (Start)
O.g.f.: 5*x*(1 - x)/(1 - 10*x)^2.
E.g.f.: (exp(10*x)*(1 + 90*x) - 1)/20. (End)

A386475 Least prime starting a run of exactly n consecutive primes with identical counts of odd digits.

Original entry on oeis.org

2, 5, 3, 11, 97, 503, 499, 491, 14303, 14293, 157259, 157253, 1525723, 4576997, 4576993, 4576991, 10411013, 33388093, 188332121, 194259301, 2853982501, 2853982499, 2853982477, 3913474277, 10883385143, 22809734971, 34883348389, 34883348369, 34883348341
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 23 2025

Keywords

Comments

Consecutive previous primes of the selected prime are ignored even though the may also have an identical count of digits.

Examples

			a(2) = 5, because the two primes in the sequence starting at 5, namely 5 and 7, each contain the same number of odd digits, and no earlier prime sequence meets this criterion.
In [2], each number contains 0 odd digits.
In [5, 7], each number contains 1 odd digit.
In [3, 5, 7], each number contains 1 odd digit.
In [11, 13, 17, 19], each number contains 2 odd digits.
In [97, 101, 103, 107, 109], each number contains 2 odd digits.
In [503, 509, 521, 523, 541, 547], each number contains 2 odd digits.
In [499, 503, 509, 521, 523, 541, 547], each number contains 2 odd digits.
In [491, 499, 503, 509, 521, 523, 541, 547], each number contains 2 odd digits.
In [14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389], each number contains 3 odd digits.
In [14293, 14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389], each number contains 3 odd digits.
		

Crossrefs

Programs

  • Mathematica
    oddn[n_] := Plus @@ Mod[IntegerDigits@ n, 2]; T = Table[0, {99}]; p = 1; While[p < 2  10^6, p = NextPrime[p]; c = oddn[p]; r=1; q=p; While[True, q = NextPrime[q]; If[oddn[q] == c, r++, Break[]]]; If[T[[r]] == 0, T[[r]] = p]]; Take[T, Position[T, 0][[1, 1]] - 1] (* Giovanni Resta, Jul 23 2025 *)

Extensions

More terms from Giovanni Resta, Jul 23 2025

A352751 Modified Sisyphus function of order 4: a(n) is the concatenation of (number of digits of n)(number digits of n congruent to 0 modulo 4)(number of digits of n congruent to 1 modulo 4)(number of digits of n congruent to 2 modulo 4)(number of digits of n congruent to 3 modulo 4).

Original entry on oeis.org

11000, 10100, 10010, 10001, 11000, 10100, 10010, 10001, 11000, 10100, 21100, 20200, 20110, 20101, 21100, 20200, 20110, 20101, 21100, 20200, 21010, 20110, 20020, 20011, 21010, 20110, 20020, 20011, 21010, 20110, 21001, 20101, 20011, 20002, 21001, 20101, 20011, 20002, 21001, 20101, 22000, 21100, 21010
Offset: 0

Views

Author

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), we eventually get one of three cycles: {51220}, {50410, 52111, 53200}, or {51301}

Examples

			11 has two digits, both congruent to 1 modulo 4, so a(11) = 20200.
a(20) = 21010.
a(30) = 21001.
a(1111123567) = 100622.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Programs

  • Python
    def a(n, order=4):
        d, m = list(map(int, str(n))), [0]*order
        for di in d: m[di%order] += 1
        return int(str(len(d)) + "".join(map(str, m)))
    print([a(n) for n in range(37)]) # Michael S. Branicky, Apr 01 2022
Previous Showing 51-53 of 53 results.