cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A196889 Number of partitions of 2^n into powers of n.

Original entry on oeis.org

1, 1, 4, 3, 6, 9, 16, 36, 85, 210, 586, 1914, 6930, 28178, 125440, 603350, 3083410, 17362239, 112403052, 820563290, 6632950912, 58209665965, 544071039000, 5353538904357, 58523908575096, 730174875609318, 10274727352967428, 159586345364505768
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Examples

			a(3) = 3 because there are 3 partitions of 2^3=8 into powers of 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
		

Crossrefs

Row n=2 of A196879.

Formula

a(n) = [x^(2^n)] 1/Product_{j>=0}(1-x^(n^j)).

A196890 Number of partitions of 3^n into powers of n.

Original entry on oeis.org

1, 1, 10, 23, 72, 335, 2220, 19166, 217862, 3428059, 71688050, 1884401480, 63363038340, 2929516409504, 178211319638172, 13290584617658383, 1240111930777216192, 158642776309162956097, 26642849845285577276244, 5432337767302682299726906
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Examples

			a(2) = 10 because there are 10 partitions of 3^2=9 into powers of 2: [1,8], [1,4,4], [1,2,2,4], [1,1,1,2,4], [1,1,1,1,1,4], [1,2,2,2,2], [1,1,1,2,2,2], [1,1,1,1,1,2,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1].
		

Crossrefs

Row n=3 of A196879.

Formula

a(n) = [x^(3^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196891 Number of partitions of 4^n into powers of n.

Original entry on oeis.org

1, 1, 36, 132, 1086, 15265, 374160, 14615986, 880915707, 87935111811, 13580513909670, 3070403347926710, 1135311726763434816, 641959330240781369240, 510702153600297288442786, 653871437018428663002896250, 1287709155623146652148156476562
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=4 of A196879.

Formula

a(n) = [x^(4^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196892 Number of partitions of 5^n into powers of n.

Original entry on oeis.org

1, 1, 94, 729, 15076, 642457, 53511471, 8939918814, 2723350958080, 1541533772278182, 1659137949188540410, 3004476086657587282943, 10324888948772382935056000, 62412485736933252992029397897, 625874099080778019949864563475382
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=5 of A196879.

Formula

a(n) = [x^(5^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196893 Number of partitions of 6^n into powers of n.

Original entry on oeis.org

1, 1, 284, 3987, 182832, 21719504, 6188114528, 3837284133564, 5498735029150412, 16177644099354374847, 104146398517005199125840, 1392276105682819242572329909, 37088099509347734659184844866868, 2148432835664289026090145748437694346
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=6 of A196879.

Formula

a(n) = [x^(6^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196894 Number of partitions of 7^n into powers of n.

Original entry on oeis.org

1, 1, 692, 18687, 1957192, 619319180, 527457882126, 1226373476385199, 6897556038713219072, 101539033269801820825743, 3421092256089716422594644400, 290708740669462708301488632766350, 55192415971099812757135585564036238784
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=7 of A196879.

Formula

a(n) = [x^(7^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196895 Number of partitions of 8^n into powers of n.

Original entry on oeis.org

1, 1, 1828, 82350, 18583582, 14357878818, 36521876237448, 270102925553717303, 6071277235712979102634, 365618223095981778848684187, 64402239847567589358641684368970, 28651633202605088497137960394142606995, 36379111301200246544606370148459181785142784
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=8 of A196879.

Formula

a(n) = [x^(8^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196896 Number of partitions of 9^n into powers of n.

Original entry on oeis.org

1, 1, 4124, 342383, 154252476, 288862888125, 1952615455825446, 46188578538444709937, 3511244471110991227215296, 884267692532264259002637317099, 657656444358222872135019335879897500, 1581273532137910865654568892971737150590744
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=9 of A196879.

Formula

a(n) = [x^(9^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.

A196897 Number of partitions of 10^n into powers of n.

Original entry on oeis.org

1, 1, 9828, 1295579, 1166493640, 4963576426547, 86220169777616208, 5945914039134501155164, 1503179627327417142865920896, 1357042381209389119735863425487474, 4362395890943439751990308572939648140812, 45406477414358716832258194914969299144120147523
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Row n=10 of A196879.

Formula

a(n) = [x^(10^n)] 1/Product_{j>=0}(1-x^(n^j)) for n>1.
Previous Showing 11-19 of 19 results.