A222710 Total number of parts of multiplicity 10 in all partitions of n.
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 15, 22, 26, 37, 45, 61, 74, 99, 120, 158, 192, 247, 300, 382, 463, 582, 705, 877, 1059, 1309, 1575, 1931, 2319, 2823, 3381, 4094, 4886, 5886, 7007, 8401, 9971, 11905, 14090, 16756, 19781, 23436, 27594, 32586, 38268, 45050
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Crossrefs
Column k=10 of A197126.
Programs
-
Maple
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0], add((l->`if`(m=10, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p))) end: a:= n-> b(n, n)[2]: seq(a(n), n=10..60);
-
Mathematica
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 10, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 10, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Formula
G.f.: (x^10/(1-x^10)-x^11/(1-x^11))/Product_{j>0}(1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (220*Pi*sqrt(2*n)). - Vaclav Kotesovec, May 24 2018
Comments