cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A263894 Number of permutations of [n] containing exactly ten occurrences of the consecutive pattern 132.

Original entry on oeis.org

654729075, 2862426470400, 1296211708989225, 261264015391703040, 34500885158438507610, 3502077835791610920960, 297315399971212318577070, 22214713615158982916505600, 1510589164324758020706100635, 95690236900543163501872250880, 5743287914726512704740717709585
Offset: 21

Views

Author

Alois P. Heinz, Oct 28 2015

Keywords

Crossrefs

Column k=10 of A197365.

Programs

  • Maple
    b:= proc(u, o, t) option remember; series(`if`(u+o=0, 1,
          add(b(u-j, o+j-1, 0)*`if`(j<=t, x, 1), j=1..u)+
          add(b(u+j-1, o-j, j-1), j=1..o)), x, 11)
        end:
    a:= n-> coeff(b(n, 0$2), x, 10):
    seq(a(n), n=21..35);

Formula

a(n) = A197365(n,10).

A343535 Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2021

Keywords

Comments

Terms in column k are multiples of k!.

Examples

			T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
              1;
              1;
              2;
              5,           1;
             20,           4;
            102,          18;
            626,          92,          2;
           4458,         564,         18;
          36144,        4032,        144;
         328794,       32898,       1182,        6;
        3316944,      301248,      10512,       96;
       36755520,     3057840,     102240,     1200;
      443828184,    34073184,    1085904,    14304,     24;
     5800823880,   413484240,   12538080,   174000,    600;
    81591320880,  5428157760,  156587040,  2214720,  10800;
  1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
  ...
		

Crossrefs

Column k=0 gives A212580.
Row sums give A000142.

Programs

  • Maple
    b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
          expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
         `if`(t=2 and h=-2, x, 1)))(j-l), j=s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                   b({$1..n}, -1, 1)):
    seq(T(n), n=0..13);
  • Mathematica
    b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
         Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
         If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
    T[n_] := CoefficientList[b[Range[n], -1, 1], x];
    T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)

Formula

T(3n,n) = n!.
Previous Showing 11-12 of 12 results.