cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A299798 Ground state degeneracy of a periodic chain for angle theta = 3*Pi/2.

Original entry on oeis.org

26, 72, 198, 570, 1641, 4725, 13605, 39174
Offset: 3

Views

Author

Michael De Vlieger, Feb 19 2018

Keywords

Crossrefs

A332331 Decimal expansion of the next-to-least positive zero of the 12th Maclaurin polynomial of cos x.

Original entry on oeis.org

4, 6, 8, 6, 5, 1, 7, 6, 6, 3, 7, 9, 5, 7, 5, 7, 4, 4, 6, 5, 7, 0, 0, 4, 8, 9, 8, 3, 7, 9, 0, 7, 7, 5, 0, 6, 6, 8, 2, 7, 1, 2, 2, 0, 1, 7, 5, 9, 6, 6, 4, 5, 8, 3, 2, 3, 1, 0, 5, 8, 7, 1, 3, 7, 5, 3, 7, 1, 4, 0, 7, 8, 7, 6, 1, 6, 8, 6, 8, 2, 0, 3, 9, 2, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2020

Keywords

Comments

The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.

Examples

			Next-to-least positive zero = 4.6865176637957574465700489837907750...
		

Crossrefs

Programs

  • Mathematica
    z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
    t = x /. NSolve[p[12, x] == 0, x, z][[8]]
    u = RealDigits[t][[1]]
    Plot[Evaluate[p[12, x]], {x, -1, 5}]

A359104 Decimal expansion of the area enclosed by Sylvester's Bicorn curve.

Original entry on oeis.org

7, 4, 6, 4, 5, 5, 9, 4, 5, 4, 3, 9, 3, 4, 6, 4, 6, 3, 3, 4, 1, 4, 6, 1, 6, 7, 2, 7, 5, 8, 9, 6, 5, 7, 5, 8, 7, 7, 0, 5, 3, 5, 3, 7, 5, 1, 0, 7, 8, 9, 6, 8, 2, 0, 3, 4, 3, 6, 5, 7, 6, 3, 5, 4, 3, 9, 6, 2, 3, 2, 4, 1, 4, 4, 5, 7, 8, 1, 1, 5, 1, 2, 9, 3, 6, 8, 6, 3, 8, 3, 3, 1, 3, 9, 0, 9, 0, 8, 9
Offset: 0

Views

Author

Bernard Schott, Dec 18 2022

Keywords

Comments

The Cartesian equation of Sylvester's Bicorn curve is y^2*(m^2-x^2) = (x^2+2*m*y-m^2)^2, here with parameter m=1. The area is proportional to the square m^2 of parameter m.
Corresponding arc length is given by A228764.

Examples

			0.746455945439346463341461672758965758770535375107896820343...
		

References

  • M. Protat, Des Olympiades à l'Agrégation, Encadrement du bicorne, Problème 66, pp. 142-145, Ellipses, Paris 1997.

Crossrefs

Cf. A228764 (length).
Other area of curves: A019692 (deltoid), A197723 (cardioid), A122952 (nephroid), A180434 (Newton strophoid).

Programs

  • Maple
    evalf((16*sqrt(3) - 27)*Pi/3, 100);
  • Mathematica
    RealDigits[(16*Sqrt[3] - 27)*Pi/3, 10, 120][[1]] (* Amiram Eldar, Dec 18 2022 *)

Formula

Equals (16*sqrt(3) - 27)*Pi/3.
Previous Showing 11-13 of 13 results.