cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A198710 Number of n X 3 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

2, 25, 401, 6548, 107042, 1749965, 28609241, 467717288, 7646461682, 125007943505, 2043688517681, 33411178843628, 546221629207922, 8929887496964645, 145989990956749721, 2386712874803449568, 39019101990629849762
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Column 3 of A198715.

Examples

			Some solutions with all values from 0 to 3 for n=4:
..0..1..2....0..1..2....0..1..0....0..1..2....0..1..0....0..1..2....0..1..0
..2..0..3....2..3..1....1..0..1....3..2..3....2..0..2....2..3..0....1..2..3
..0..1..0....0..1..2....0..2..3....2..3..0....0..3..1....0..2..1....3..0..1
..3..2..3....3..2..1....3..0..1....1..2..3....2..1..3....1..0..3....0..3..2
		

Crossrefs

Cf. A198715.

Formula

Empirical: a(n) = 19*a(n-1) - 45*a(n-2) + 27*a(n-3).
Empirical g.f.: x*(2 - 13*x + 16*x^2) / ((1 - x)*(1 - 18*x + 27*x^2)). - Colin Barker, Mar 02 2018

A198709 Number of n X n 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 401, 250031, 851787199, 15835552812749, 1606578861528554441, 889483369334451647489771, 2687450673445984030296455830409
Offset: 1

Views

Author

R. H. Hardin Oct 29 2011

Keywords

Comments

Diagonal of A198715

Examples

			Some solutions with all values from 0 to 3 for n=4
..0..1..0..1....0..1..0..2....0..1..0..1....0..1..0..2....0..1..2..0
..1..2..1..3....1..2..1..3....1..0..2..3....2..3..2..3....1..0..3..1
..2..1..3..2....2..1..3..2....2..3..1..2....1..2..0..1....0..3..1..2
..1..3..1..0....1..2..0..1....3..0..2..1....2..0..3..0....2..1..2..3
		

Programs

A198711 Number of n X 4 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

5, 172, 6548, 250031, 9548295, 364637102, 13925032958, 531779578441, 20307996787865, 775536991678112, 29616787512285048, 1131028064429979731, 43192546862380323515, 1649469330720040937602, 62991170251091380482818
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Column 4 of A198715.

Examples

			Some solutions with all values from 0 to 3 for n=5:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..2..0....1..0..1..2....1..0..1..2....1..0..1..0....1..0..1..0
..0..2..0..3....2..1..3..1....3..1..0..1....2..1..0..3....2..1..3..1
..2..1..2..0....1..2..0..3....1..0..3..0....3..2..1..0....3..0..1..3
..1..2..1..2....2..3..1..2....2..1..0..1....2..1..3..2....2..3..0..1
		

Crossrefs

Cf. A198715.

Formula

Empirical: a(n) = 46*a(n-1) - 312*a(n-2) + 530*a(n-3) - 263*a(n-4).
Empirical g.f.: x*(5 - 58*x + 196*x^2 - 163*x^3) / ((1 - x)*(1 - 45*x + 267*x^2 - 263*x^3)). - Colin Barker, Mar 02 2018

A198712 Number of nX5 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

14, 1201, 107042, 9548295, 851787199, 75987485516, 6778819400772, 604736581320925, 53948385378521909, 4812720805166620356, 429341516830025751982, 38301440209010857426775, 3416861087749979581617789
Offset: 1

Views

Author

R. H. Hardin Oct 29 2011

Keywords

Comments

Column 5 of A198715

Examples

			Some solutions with all values from 0 to 3 for n=4
..0..1..2..0..2....0..1..2..3..1....0..1..0..2..0....0..1..2..0..1
..1..0..3..2..3....1..0..3..1..0....1..0..1..0..1....1..0..1..2..3
..0..1..2..3..1....0..1..2..3..2....0..1..2..1..3....0..1..0..3..1
..1..3..0..2..3....1..2..1..2..1....1..3..0..3..2....1..0..2..1..0
		

Formula

Empirical: a(n) = 119*a(n-1) -2929*a(n-2) +25066*a(n-3) -76115*a(n-4) -887*a(n-5) +324153*a(n-6) -444798*a(n-7) +175392*a(n-8)

A198713 Number of nX6 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

41, 8404, 1749965, 364637102, 75987485516, 15835552812749, 3300094936852775, 687733321797971342, 143322307142433346196, 29868095632655586533219, 6224454258216624967544685, 1297164418016611898106044912
Offset: 1

Views

Author

R. H. Hardin Oct 29 2011

Keywords

Comments

Column 6 of A198715

Examples

			Some solutions with all values from 0 to 3 for n=4
..0..1..0..1..0..2....0..1..0..2..3..0....0..1..0..2..0..3....0..1..0..2..1..2
..1..0..2..3..2..3....1..0..2..0..1..2....1..0..2..0..1..2....1..0..2..0..2..3
..0..1..0..2..3..2....0..1..0..2..0..3....0..1..0..1..0..3....0..1..0..1..0..2
..1..0..1..3..1..3....1..0..3..0..2..0....1..0..2..0..3..2....1..0..3..2..1..3
		

Formula

Empirical: a(n) = 313*a(n-1) -25836*a(n-2) +915863*a(n-3) -16213670*a(n-4) +144756201*a(n-5) -517271096*a(n-6) -1142631169*a(n-7) +16130100519*a(n-8) -49834494904*a(n-9) +41222570902*a(n-10) +81411834252*a(n-11) -186980689770*a(n-12) +120589827444*a(n-13) -21008679048*a(n-14)

A198714 Number of nX7 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

122, 58825, 28609241, 13925032958, 6778819400772, 3300094936852775, 1606578861528554441, 782129027546108478208, 380763168247444298026697, 185366606445710896112671190, 90241867886483759053800200221
Offset: 1

Views

Author

R. H. Hardin Oct 29 2011

Keywords

Comments

Column 7 of A198715

Examples

			Some solutions with all values from 0 to 3 for n=4
..0..1..0..2..0..1..2....0..1..0..2..0..3..0....0..1..0..2..1..3..1
..1..0..2..0..2..3..1....1..0..2..0..2..1..3....1..0..2..0..3..1..0
..0..1..0..2..1..2..0....0..1..0..2..0..3..1....0..1..0..2..1..0..3
..1..0..2..0..3..1..2....1..0..2..0..3..0..3....1..0..2..0..2..3..1
		

Formula

Empirical: a(n) = 820*a(n-1) -205689*a(n-2) +23977335*a(n-3) -1448890080*a(n-4) +40681354716*a(n-5) +113470351405*a(n-6) -45083135350759*a(n-7) +1384281526165416*a(n-8) -16268081626571563*a(n-9) -63890727017432669*a(n-10) +4141584863538946248*a(n-11) -41819886892303325457*a(n-12) -30483804619910407683*a(n-13) +3863177257558021068078*a(n-14) -27574675558592643871665*a(n-15) -5974253069771812381395*a(n-16) +994204560645628682891988*a(n-17) -4133294712546191129276631*a(n-18) -5200219344858789634094007*a(n-19) +79782056692975632581941806*a(n-20) -145976694071885459756226729*a(n-21) -381423099164490179830401489*a(n-22) +1687752294947845021038392100*a(n-23) -947863788801858331624770840*a(n-24) -4416578720165084280803867511*a(n-25) +7519754083669273956859949007*a(n-26) -393515001351016977961508328*a(n-27) -8318760918675594342013626309*a(n-28) +7729370069736269915861360652*a(n-29) -2679235928159828068047490236*a(n-30) +224133015493782945421410924*a(n-31) +60130490872795258151715444*a(n-32) -9198797534128825159826898*a(n-33)
Previous Showing 11-16 of 16 results.