cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A198715 T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
		

Crossrefs

Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A355882 Number of ways to 4-color a 3 X n grid ignoring the variations of two colors.

Original entry on oeis.org

3, 49, 801, 13095, 214083, 3499929, 57218481, 935434575, 15292923363, 250015887009, 4087377035361, 66822357687255, 1092443258415843, 17859774993929289, 291979981913499441, 4773425749606899135, 78038203981259699523, 1275805176423288314769
Offset: 1

Views

Author

Gerhard Kirchner, Jul 24 2022

Keywords

Comments

See A355881 for a general formula.

Examples

			a(1) = 3, 4 colors 1,2,3,4: 121, 123, 124.
The first two colors do not vary.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{18, -27}, {3, 49}, 20] (* Paolo Xausa, Oct 03 2024 *)

Formula

G.f.: x*(3-5*x)/(1-18*x+27*x^2).
a(n) = 18*a(n-1) - 27*a(n-2) with a(1) = 3, a(2) = 49.
a(n) = 3^(n-7/2)*((12 + 5*sqrt(6))*(3 + sqrt(6))^n - (3 - sqrt(6))^n*(12 - 5*sqrt(6)))/(2*sqrt(2)). - Stefano Spezia, Jul 24 2022
a(n) = 2*A198710(n) - 1. - Hugo Pfoertner, Jul 24 2022
Showing 1-2 of 2 results.