cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A200638 Decimal expansion of least x>0 satisfying 6*x^2+5=tan(x).

Original entry on oeis.org

1, 5, 1, 7, 7, 1, 3, 3, 1, 8, 6, 7, 9, 0, 9, 2, 8, 1, 6, 9, 8, 6, 2, 5, 5, 9, 8, 1, 2, 0, 6, 5, 2, 1, 7, 2, 8, 5, 5, 8, 1, 6, 4, 1, 1, 3, 4, 9, 5, 3, 8, 8, 9, 0, 3, 4, 6, 3, 7, 0, 3, 8, 2, 5, 0, 0, 3, 3, 7, 7, 3, 3, 9, 4, 0, 2, 0, 0, 7, 6, 5, 9, 7, 8, 7, 3, 0, 5, 2, 7, 8, 8, 2, 4, 6, 5, 5, 7, 0, 9, 8, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.517713318679092816986255981206521728558164...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 6; c = -5;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200638 *)

A200639 Decimal expansion of least x>0 satisfying x^2+5=tan(x).

Original entry on oeis.org

1, 4, 2, 9, 7, 7, 9, 1, 8, 9, 1, 9, 0, 6, 0, 7, 6, 4, 8, 7, 2, 8, 6, 6, 8, 9, 1, 7, 2, 2, 2, 1, 3, 4, 2, 4, 9, 2, 0, 7, 9, 5, 2, 2, 5, 8, 4, 8, 0, 0, 0, 2, 9, 9, 9, 7, 5, 0, 4, 0, 7, 7, 4, 9, 5, 6, 6, 3, 0, 1, 2, 5, 2, 3, 2, 0, 5, 0, 3, 9, 5, 7, 4, 5, 4, 6, 1, 0, 8, 7, 0, 4, 2, 6, 3, 2, 6, 5, 5, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.42977918919060764872866891722213424920795225848000...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; c = -5;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.41, 1.42}, WorkingPrecision -> 110]
    RealDigits[r]    (* A200639 *)

A200640 Decimal expansion of least x>0 satisfying 2*x^2+5=tan(x).

Original entry on oeis.org

1, 4, 6, 3, 4, 9, 3, 5, 3, 1, 5, 8, 7, 8, 1, 6, 7, 8, 7, 4, 0, 1, 6, 4, 7, 0, 5, 3, 7, 9, 7, 8, 9, 8, 2, 6, 9, 2, 6, 3, 6, 0, 4, 4, 4, 4, 6, 0, 2, 7, 9, 9, 8, 9, 4, 3, 6, 4, 5, 5, 2, 2, 7, 9, 3, 0, 9, 3, 0, 8, 2, 4, 3, 2, 8, 1, 2, 2, 1, 4, 9, 4, 7, 6, 6, 4, 6, 1, 6, 8, 1, 5, 1, 0, 3, 9, 8, 0, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.463493531587816787401647053797898269263604444...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 2; c = -5;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.46, 1.47}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200640 *)

A200641 Decimal expansion of least x>0 satisfying 3*x^2+5=tan(x).

Original entry on oeis.org

1, 4, 8, 4, 9, 1, 1, 7, 2, 5, 4, 2, 5, 8, 9, 4, 5, 5, 7, 9, 6, 7, 6, 2, 3, 6, 4, 1, 7, 8, 4, 7, 2, 8, 0, 8, 3, 2, 8, 1, 7, 5, 4, 7, 2, 0, 3, 6, 3, 7, 8, 2, 4, 0, 1, 7, 8, 5, 5, 8, 9, 2, 2, 1, 4, 7, 5, 8, 2, 0, 2, 7, 0, 3, 1, 1, 8, 3, 5, 3, 2, 7, 4, 8, 5, 1, 3, 0, 2, 4, 8, 3, 7, 8, 5, 6, 0, 4, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.484911725425894557967623641784728083281754...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 3; c = -5;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.48, 1.49}, WorkingPrecision -> 110]
    RealDigits[r] (* A200641 *)

A200642 Decimal expansion of least x>0 satisfying 4*x^2+5=tan(x).

Original entry on oeis.org

1, 4, 9, 9, 4, 5, 5, 6, 9, 7, 1, 2, 8, 7, 3, 0, 9, 7, 4, 2, 7, 9, 9, 3, 6, 4, 0, 4, 3, 1, 7, 2, 1, 6, 3, 6, 5, 2, 6, 3, 3, 8, 1, 8, 9, 4, 6, 1, 2, 9, 8, 9, 5, 2, 4, 8, 6, 0, 5, 6, 6, 9, 2, 5, 8, 1, 6, 9, 7, 5, 3, 9, 3, 4, 7, 5, 7, 0, 1, 9, 7, 8, 8, 1, 3, 5, 4, 5, 0, 3, 1, 3, 3, 4, 4, 2, 7, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.4994556971287309742799364043172163652633818946...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 4; c = -5;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.49, 1.5}, WorkingPrecision -> 110]
    RealDigits[r] (* A200642 *)

A200643 Decimal expansion of least x>0 satisfying 7*x^2=tan(x).

Original entry on oeis.org

1, 5, 0, 8, 0, 6, 3, 8, 7, 5, 0, 8, 5, 6, 5, 4, 9, 9, 0, 0, 6, 8, 7, 1, 0, 4, 0, 4, 9, 4, 2, 1, 0, 1, 5, 5, 9, 2, 6, 1, 7, 9, 8, 8, 8, 2, 3, 7, 2, 4, 0, 6, 5, 2, 3, 2, 8, 7, 9, 4, 8, 7, 4, 1, 5, 0, 7, 5, 0, 7, 9, 6, 8, 6, 8, 2, 1, 4, 7, 9, 7, 9, 8, 6, 3, 5, 9, 0, 5, 9, 2, 9, 5, 6, 1, 7, 1, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.50806387508565499006871040494210155926179888...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 7; c = 0;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.51}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200643 *)

A200644 Decimal expansion of least x>0 satisfying 8*x^2=tan(x).

Original entry on oeis.org

1, 5, 1, 6, 4, 9, 6, 2, 8, 2, 9, 2, 4, 1, 2, 3, 7, 5, 6, 0, 1, 2, 7, 2, 8, 3, 5, 2, 0, 3, 1, 5, 7, 9, 9, 8, 6, 5, 2, 6, 3, 3, 7, 8, 1, 3, 5, 1, 5, 9, 5, 1, 0, 2, 4, 6, 2, 3, 9, 5, 4, 7, 5, 8, 3, 6, 1, 7, 1, 8, 0, 3, 8, 9, 5, 8, 4, 7, 1, 9, 0, 2, 7, 0, 8, 7, 4, 7, 6, 7, 8, 5, 4, 5, 5, 1, 2, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.516496282924123756012728352031579986526337...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 8; c = 0;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.51, 1.52}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200644 *)

A200645 Decimal expansion of least x>0 satisfying 9*x^2=tan(x).

Original entry on oeis.org

1, 5, 2, 2, 9, 2, 5, 8, 1, 4, 4, 6, 9, 9, 6, 5, 5, 3, 7, 6, 7, 3, 6, 6, 4, 3, 8, 7, 6, 6, 5, 1, 9, 9, 6, 6, 1, 6, 6, 2, 7, 3, 7, 1, 7, 8, 3, 3, 6, 5, 2, 6, 2, 1, 9, 4, 7, 2, 9, 4, 8, 1, 1, 4, 6, 5, 6, 1, 4, 2, 5, 9, 5, 1, 2, 3, 6, 9, 4, 1, 8, 7, 8, 9, 0, 3, 2, 4, 3, 4, 6, 7, 3, 6, 3, 4, 5, 1, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.5229258144699655376736643876651996616627371...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 9; c = 0;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.52, 1.53}, WorkingPrecision -> 110]
    RealDigits[r] (* A200645 *)

A200646 Decimal expansion of least x>0 satisfying 10*x^2=tan(x).

Original entry on oeis.org

1, 5, 2, 7, 9, 9, 1, 4, 9, 7, 9, 1, 3, 9, 9, 9, 9, 1, 7, 1, 7, 1, 1, 3, 4, 3, 8, 4, 8, 6, 1, 4, 5, 5, 9, 3, 8, 6, 7, 7, 1, 6, 3, 1, 6, 6, 2, 6, 2, 4, 0, 5, 2, 1, 3, 0, 3, 4, 4, 9, 0, 9, 0, 9, 0, 1, 8, 8, 7, 9, 9, 3, 0, 3, 3, 9, 8, 1, 7, 9, 9, 3, 7, 4, 9, 7, 0, 5, 9, 2, 0, 4, 5, 3, 4, 3, 2, 8, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.527991497913999917171134384861455938677...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 10; c = 0;
    f[x_] := a*x^2 - c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.52, 1.53}, WorkingPrecision -> 110]
    RealDigits[r] (* A200646 *)

A200685 Decimal expansion of least x>0 satisfying 1-x^2=tan(x).

Original entry on oeis.org

5, 8, 3, 2, 4, 8, 4, 6, 7, 2, 5, 5, 0, 4, 8, 0, 4, 1, 4, 8, 3, 8, 6, 6, 6, 2, 9, 9, 1, 3, 2, 0, 7, 5, 4, 0, 7, 3, 0, 4, 3, 4, 9, 7, 8, 7, 7, 2, 0, 5, 6, 0, 0, 6, 0, 3, 4, 8, 2, 7, 1, 1, 4, 9, 4, 2, 3, 2, 2, 7, 4, 9, 1, 5, 8, 8, 1, 3, 3, 6, 7, 3, 0, 2, 9, 7, 2, 1, 6, 1, 9, 4, 5, 9, 1, 4, 9, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 20 2011

Keywords

Comments

See A200614 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.5832484672550480414838666299132075407...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = -1; c = 1;
    f[x_] := a*x^2 + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r](* A200685 *)
Previous Showing 31-40 of 60 results. Next