cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A201526 Decimal expansion of greatest x satisfying 8*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 1, 3, 0, 0, 5, 7, 3, 7, 4, 4, 7, 7, 4, 9, 0, 9, 7, 7, 7, 4, 6, 9, 3, 0, 5, 4, 0, 1, 2, 0, 7, 0, 4, 4, 6, 0, 1, 9, 5, 5, 8, 8, 8, 6, 9, 4, 3, 2, 2, 3, 4, 2, 0, 4, 7, 3, 9, 1, 8, 7, 6, 1, 2, 1, 5, 8, 8, 2, 8, 9, 4, 5, 6, 1, 0, 7, 7, 4, 1, 4, 7, 8, 7, 3, 8, 0, 0, 8, 6, 2, 7, 8, 8, 7, 6, 6, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.518577002201711458253109820417244...
greatest: 1.5130057374477490977746930540120...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 8; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201525 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201526 *)

A201527 Decimal expansion of least x satisfying 9*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

4, 8, 6, 6, 3, 6, 5, 1, 3, 4, 4, 2, 8, 2, 8, 7, 9, 6, 4, 1, 5, 0, 1, 0, 6, 8, 8, 8, 7, 7, 4, 0, 5, 3, 0, 6, 1, 5, 3, 8, 3, 1, 1, 0, 2, 8, 3, 9, 7, 3, 3, 6, 9, 2, 6, 7, 4, 2, 5, 4, 7, 1, 3, 2, 8, 8, 0, 9, 9, 8, 8, 9, 2, 5, 7, 8, 6, 4, 7, 1, 9, 3, 7, 2, 7, 8, 9, 1, 4, 0, 6, 4, 1, 4, 5, 6, 3, 3, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4866365134428287964150106888774053061...
greatest: 1.52027247650615034595984357679438306...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 9; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201527 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201528 *)

A201528 Decimal expansion of greatest x satisfying 9*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 2, 0, 2, 7, 2, 4, 7, 6, 5, 0, 6, 1, 5, 0, 3, 4, 5, 9, 5, 9, 8, 4, 3, 5, 7, 6, 7, 9, 4, 3, 8, 3, 0, 6, 3, 0, 4, 2, 1, 6, 3, 8, 0, 6, 1, 0, 2, 5, 7, 5, 3, 9, 3, 3, 2, 7, 0, 7, 3, 2, 6, 4, 6, 0, 7, 6, 8, 0, 7, 7, 6, 2, 1, 2, 1, 3, 7, 2, 4, 4, 6, 1, 0, 5, 4, 5, 3, 5, 0, 0, 9, 2, 6, 7, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4866365134428287964150106888774053061...
greatest: 1.52027247650615034595984357679438306...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 9; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201527 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201528 *)

A201529 Decimal expansion of least x satisfying 10*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

4, 6, 0, 0, 0, 0, 6, 9, 8, 5, 7, 9, 4, 9, 0, 4, 2, 1, 6, 9, 6, 9, 3, 4, 9, 8, 3, 3, 8, 4, 4, 4, 6, 0, 9, 3, 8, 6, 3, 4, 3, 9, 0, 7, 3, 2, 8, 5, 4, 0, 9, 6, 9, 3, 7, 4, 6, 5, 6, 6, 4, 6, 5, 1, 7, 3, 7, 8, 8, 3, 8, 8, 1, 3, 6, 5, 3, 4, 4, 0, 4, 1, 1, 9, 1, 8, 0, 5, 1, 8, 6, 4, 6, 1, 1, 5, 4, 6, 3
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4600006985794904216969349833844460938634...
greatest: 1.52590577141056614542926620695066975318...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 10; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201529 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201530 *)

A201530 Decimal expansion of greatest x satisfying 10*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 2, 5, 9, 0, 5, 7, 7, 1, 4, 1, 0, 5, 6, 6, 1, 4, 5, 4, 2, 9, 2, 6, 6, 2, 0, 6, 9, 5, 0, 6, 6, 9, 7, 5, 3, 1, 8, 6, 9, 3, 5, 1, 7, 0, 0, 5, 3, 9, 8, 0, 6, 7, 9, 9, 2, 9, 5, 0, 3, 0, 4, 6, 8, 3, 6, 6, 5, 7, 8, 0, 1, 2, 2, 6, 5, 6, 9, 5, 6, 2, 7, 3, 8, 9, 6, 2, 2, 4, 2, 2, 9, 3, 4, 5, 3, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4600006985794904216969349833844460938634...
greatest: 1.52590577141056614542926620695066975318...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 10; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201529 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201530 *)

A200619 Decimal expansion of x satisfying 3*x^2 + 2 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 5, 0, 1, 4, 9, 5, 5, 1, 5, 6, 1, 7, 6, 7, 7, 4, 0, 8, 6, 2, 2, 1, 6, 8, 3, 0, 9, 0, 9, 2, 2, 0, 1, 3, 5, 2, 4, 3, 6, 4, 2, 6, 2, 5, 8, 8, 4, 3, 7, 3, 6, 0, 4, 2, 0, 3, 1, 0, 5, 7, 9, 5, 4, 0, 8, 6, 8, 1, 5, 2, 0, 3, 9, 9, 4, 3, 4, 1, 8, 7, 2, 2, 5, 9, 1, 2, 8, 2, 6, 7, 0, 7, 2, 4, 2, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.450149551561767740862216830909220135243...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 3; c = 2;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200619 *)

A201398 Decimal expansion of x satisfying x^2 + 3 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 3, 6, 3, 5, 1, 9, 4, 6, 8, 4, 8, 6, 2, 0, 1, 8, 5, 7, 3, 5, 2, 2, 8, 1, 2, 8, 4, 5, 8, 4, 2, 3, 7, 8, 7, 7, 3, 2, 9, 5, 1, 4, 4, 9, 4, 6, 3, 1, 2, 5, 9, 4, 4, 8, 5, 3, 8, 7, 8, 9, 0, 6, 1, 7, 8, 7, 4, 8, 5, 4, 8, 4, 5, 6, 2, 7, 2, 1, 2, 4, 5, 7, 8, 9, 9, 5, 1, 3, 5, 3, 7, 2, 0, 8, 7, 7, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.363519468486201857352281284584237877...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 3;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201398 *)

A201399 Decimal expansion of x satisfying x^2 + 4 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 0, 2, 4, 0, 6, 0, 3, 1, 2, 7, 6, 5, 1, 6, 4, 7, 2, 8, 6, 3, 7, 6, 5, 8, 5, 4, 6, 9, 3, 9, 7, 3, 0, 3, 2, 3, 0, 5, 2, 3, 1, 8, 9, 3, 8, 7, 0, 0, 8, 1, 0, 9, 3, 8, 2, 9, 8, 9, 9, 6, 6, 5, 5, 8, 2, 5, 2, 7, 7, 7, 8, 3, 4, 2, 4, 3, 5, 0, 8, 4, 7, 5, 7, 8, 1, 8, 5, 1, 9, 3, 9, 3, 4, 9, 5, 5, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.40240603127651647286376585469397303230523...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 4;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201399 *)

A201400 Decimal expansion of x satisfying x^2 + 5 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 2, 8, 2, 6, 7, 7, 6, 5, 8, 3, 8, 2, 2, 2, 6, 4, 0, 3, 3, 9, 7, 6, 6, 3, 0, 1, 3, 2, 5, 2, 7, 7, 6, 0, 6, 6, 2, 8, 1, 3, 1, 0, 7, 4, 1, 3, 2, 3, 8, 0, 7, 8, 8, 4, 1, 0, 0, 4, 1, 5, 6, 5, 2, 4, 2, 1, 0, 7, 6, 0, 2, 9, 0, 4, 3, 2, 9, 3, 4, 0, 3, 3, 3, 5, 3, 6, 2, 7, 9, 5, 1, 4, 8, 7, 2, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.42826776583822264033976630132527760662...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 5;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201400 *)

A201401 Decimal expansion of x satisfying x^2 + 6 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 4, 6, 9, 2, 5, 2, 6, 4, 8, 5, 3, 0, 3, 9, 2, 2, 3, 8, 8, 2, 5, 8, 9, 8, 8, 1, 4, 2, 8, 4, 9, 2, 1, 8, 1, 0, 5, 7, 9, 6, 4, 9, 6, 2, 1, 4, 2, 1, 7, 7, 5, 1, 4, 1, 7, 2, 7, 6, 0, 1, 6, 3, 3, 5, 8, 2, 4, 6, 2, 0, 2, 5, 5, 4, 2, 9, 0, 8, 4, 3, 8, 5, 8, 1, 7, 4, 0, 3, 5, 0, 2, 6, 9, 5, 6, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.446925264853039223882589881428492181...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 6;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201401 *)
Previous Showing 31-40 of 45 results. Next