cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A201660 Decimal expansion of least x satisfying 10*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

4, 6, 9, 9, 3, 1, 6, 0, 6, 0, 0, 0, 5, 8, 8, 9, 2, 2, 8, 6, 8, 6, 5, 3, 5, 3, 5, 0, 6, 1, 8, 9, 1, 3, 0, 6, 3, 8, 8, 3, 0, 0, 1, 3, 8, 0, 3, 5, 1, 8, 7, 1, 7, 7, 1, 9, 5, 5, 5, 3, 2, 2, 0, 6, 5, 8, 3, 1, 9, 3, 9, 2, 9, 8, 6, 4, 9, 6, 1, 7, 2, 5, 3, 0, 5, 5, 7, 6, 3, 7, 7, 6, 3, 2, 6, 7, 3, 4, 0, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.469931606000588922868653535061891306388300...
greatest:  3.131394253920689935444028622238747025122...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201660 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201662 *)
  • PARI
    a=10; c=0; solve(x=0.4, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

Extensions

Terms a(90) onward corrected by G. C. Greubel, Sep 11 2018

A201661 Decimal expansion of least x satisfying x^2 - 1 = csc(x) and 0

Original entry on oeis.org

1, 4, 1, 8, 3, 5, 5, 6, 1, 8, 5, 4, 4, 9, 4, 2, 6, 5, 6, 3, 3, 5, 3, 0, 6, 2, 3, 6, 8, 7, 2, 0, 8, 1, 9, 1, 9, 3, 3, 6, 0, 8, 6, 0, 7, 1, 9, 4, 4, 2, 3, 1, 8, 8, 8, 4, 1, 9, 9, 5, 2, 7, 3, 9, 8, 4, 1, 1, 0, 9, 3, 7, 8, 2, 6, 9, 7, 4, 6, 2, 0, 7, 9, 6, 9, 2, 0, 3, 5, 0, 8, 7, 4, 1, 3, 1, 5, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  1.4183556185449426563353062368720819193360860...
greatest:  3.0179424745361512278525720832771672528942...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201661 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201663 *)
  • PARI
    a=1; c=-1; solve(x=1, 2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201662 Decimal expansion of greatest x satisfying 10*x^2 = csc(x) and 0

Original entry on oeis.org

3, 1, 3, 1, 3, 9, 4, 2, 5, 3, 9, 2, 0, 6, 8, 9, 9, 3, 5, 4, 4, 4, 0, 2, 8, 6, 2, 2, 2, 3, 8, 7, 4, 7, 0, 2, 5, 1, 2, 2, 6, 9, 2, 6, 3, 5, 3, 4, 1, 8, 2, 7, 3, 1, 3, 6, 8, 5, 9, 4, 6, 4, 8, 3, 8, 3, 0, 4, 0, 3, 1, 1, 3, 7, 1, 5, 0, 1, 9, 1, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.469931606000588922868653535061891306388300...
greatest:  3.131394253920689935444028622238747025122...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 10; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201660 *)
    r = x /.  FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201662 *)
  • PARI
    a=10; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201663 Decimal expansion of greatest x satisfying x^2 - 1 = csc(x) and 0

Original entry on oeis.org

3, 0, 1, 7, 9, 4, 2, 4, 7, 4, 5, 3, 6, 1, 5, 1, 2, 2, 7, 8, 5, 2, 5, 7, 2, 0, 8, 3, 2, 7, 7, 1, 6, 7, 2, 5, 2, 8, 9, 4, 2, 8, 4, 3, 4, 1, 4, 3, 6, 2, 0, 0, 3, 3, 1, 9, 5, 6, 9, 9, 8, 3, 6, 0, 1, 0, 5, 7, 5, 6, 1, 5, 5, 3, 1, 4, 4, 6, 0, 8, 3, 8, 7, 2, 3, 6, 5, 8, 4, 5, 3, 2, 1, 8, 4, 8, 5, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  1.4183556185449426563353062368720819193360860...
greatest:  3.0179424745361512278525720832771672528942...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201661 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201663 *)
  • PARI
    a=1; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201664 Decimal expansion of least x satisfying 2*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

1, 0, 3, 9, 2, 4, 5, 6, 5, 0, 7, 9, 7, 2, 4, 7, 7, 9, 3, 2, 3, 1, 9, 2, 9, 3, 2, 7, 2, 4, 2, 4, 8, 3, 7, 3, 0, 0, 0, 0, 8, 0, 9, 3, 7, 9, 8, 9, 5, 8, 9, 7, 9, 8, 3, 3, 6, 4, 4, 7, 1, 6, 0, 5, 2, 3, 5, 7, 4, 2, 6, 8, 0, 3, 4, 7, 4, 2, 1, 1, 9, 0, 7, 0, 0, 8, 4, 2, 0, 0, 0, 4, 3, 2, 9, 1, 5, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  1.039245650797247793231929327242483730000...
greatest:  3.086158774377127181225948286358214524...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 2; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201664 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]      (* A201665 *)
  • PARI
    a=2; c=-1; solve(x=1, 2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201665 Decimal expansion of greatest x satisfying 2*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

3, 0, 8, 6, 1, 5, 8, 7, 7, 4, 3, 7, 7, 1, 2, 7, 1, 8, 1, 2, 2, 5, 9, 4, 8, 2, 8, 6, 3, 5, 8, 2, 1, 4, 5, 2, 4, 9, 8, 5, 3, 3, 6, 2, 2, 2, 6, 5, 7, 2, 2, 3, 1, 2, 0, 5, 5, 0, 0, 3, 9, 9, 0, 9, 2, 5, 4, 4, 4, 8, 6, 8, 6, 5, 9, 4, 8, 8, 2, 3, 8, 2, 7, 4, 4, 0, 4, 8, 0, 4, 6, 9, 4, 9, 0, 8, 0, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  1.039245650797247793231929327242483730000...
greatest:  3.086158774377127181225948286358214524...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 2; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201664 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]      (* A201665 *)
  • PARI
    a=2; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201666 Decimal expansion of least x satisfying 3*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

8, 7, 5, 9, 4, 3, 7, 3, 8, 7, 2, 4, 3, 5, 6, 4, 4, 1, 5, 4, 9, 4, 6, 2, 8, 6, 7, 9, 5, 5, 3, 0, 3, 8, 7, 6, 3, 2, 3, 3, 7, 0, 6, 0, 9, 4, 6, 0, 1, 1, 0, 6, 5, 5, 1, 5, 3, 7, 4, 4, 6, 4, 2, 5, 8, 2, 0, 8, 7, 3, 4, 0, 1, 5, 9, 7, 0, 3, 5, 4, 4, 2, 8, 6, 7, 8, 8, 9, 5, 6, 9, 7, 2, 2, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.875943738724356441549462867955303876323370...
greatest:  3.105791229363082277928967931614314303595...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 3; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201666 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201667 *)
  • PARI
    a=3; c=-1; solve(x=.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201667 Decimal expansion of greatest x satisfying 3*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

3, 1, 0, 5, 7, 9, 1, 2, 2, 9, 3, 6, 3, 0, 8, 2, 2, 7, 7, 9, 2, 8, 9, 6, 7, 9, 3, 1, 6, 1, 4, 3, 1, 4, 3, 0, 3, 5, 9, 5, 3, 6, 9, 7, 6, 5, 5, 5, 2, 9, 1, 7, 0, 3, 3, 2, 2, 8, 1, 2, 7, 8, 5, 1, 1, 4, 2, 9, 5, 2, 0, 6, 7, 4, 2, 4, 0, 0, 2, 7, 5, 4, 0, 8, 2, 0, 1, 2, 1, 2, 0, 0, 3, 9, 9, 4, 5, 3, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.875943738724356441549462867955303876323370...
greatest:  3.105791229363082277928967931614314303595...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 3; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201666 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201667 *)
  • PARI
    a=3; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201668 Decimal expansion of least x satisfying 4*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

7, 7, 8, 4, 7, 6, 7, 7, 7, 2, 7, 7, 5, 9, 4, 2, 3, 1, 2, 9, 0, 0, 3, 5, 2, 7, 9, 9, 8, 6, 7, 2, 6, 8, 7, 7, 9, 8, 6, 1, 2, 4, 8, 6, 5, 6, 2, 6, 2, 4, 6, 1, 1, 5, 6, 8, 0, 0, 6, 2, 0, 9, 6, 5, 7, 7, 6, 3, 2, 2, 1, 7, 5, 3, 8, 6, 6, 8, 9, 4, 8, 6, 1, 4, 6, 8, 3, 7, 2, 9, 9, 1, 2, 4, 5, 4, 7, 3, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.7784767772775942312900352799867268779861...
greatest:  3.1151461160403612671519315474503258920...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 4; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201668 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201669 *)
  • PARI
    a=4; c=-1; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

A201669 Decimal expansion of greatest x satisfying 4*x^2 - 1 = csc(x) and 0

Original entry on oeis.org

3, 1, 1, 5, 1, 4, 6, 1, 1, 6, 0, 4, 0, 3, 6, 1, 2, 6, 7, 1, 5, 1, 9, 3, 1, 5, 4, 7, 4, 5, 0, 3, 2, 5, 8, 9, 2, 0, 0, 2, 1, 8, 5, 9, 2, 8, 9, 5, 2, 8, 0, 5, 4, 1, 6, 1, 9, 3, 4, 0, 5, 8, 9, 2, 4, 4, 2, 1, 3, 9, 6, 5, 0, 1, 1, 7, 1, 2, 4, 8, 6, 6, 3, 9, 9, 7, 8, 0, 0, 3, 8, 5, 3, 4, 9, 5, 9, 9, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.7784767772775942312900352799867268779861...
greatest:  3.1151461160403612671519315474503258920...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 4; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201668 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201669 *)
  • PARI
    a=4; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Previous Showing 31-40 of 63 results. Next