cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A204575 Squares such that [a(n)/2] is again a square (A055792), written in binary.

Original entry on oeis.org

0, 1, 1001, 100100001, 10011001001001, 1010001010010000001, 101011001001001011001001, 10110111001100110101000100001, 1100001001111011011000010110001001, 110011100111010101001010101001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204576 Floor[A055792(n-1)/2]=A084703(n-2) (truncated squares), written in binary.

Original entry on oeis.org

0, 0, 100, 10010000, 1001100100100, 101000101001000000, 10101100100100101100100, 1011011100110011010100010000, 110000100111101101100001011000100, 11001110011101010100101010100100000000, 1101101100101100000000000111010111101000100
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

A204575 with the last (binary) digit (necessarily = 1, except for a(1)=0) deleted.
Also: Squares, written in binary, such that appending a (binary) digit (necessarily = 1) yields another square (except for a(1)=0 which corresponds to A204575(1)=00, the only square which remains square when multiplied by 2).

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204513 A204517(n)^2 = floor[A055859(n)/7]: Squares which written in base 7, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 36, 289, 2304, 9216, 73441, 585225, 2340900, 18653761, 148644864, 594579456, 4737981889, 37755210249, 151020840996, 1203428746081, 9589674758400, 38358699033600, 305666163522721, 2435739633423369, 9742958533693476, 77638002106025089, 618668277214777344, 2474673108859109376, 19719746868766849921, 157139306672920022025, 628557226691680088100, 5008738066664673854881, 39912765226644470817024, 159651060906577883268096
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-7 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=0,200,issquare(n^2\b) & print1(n^2\b,","))
    
  • PARI
    A204513(n)=polcoeff((x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9+O(x^n)),n)

Formula

G.f. = (x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9)

A204577 Sqrt(floor[A204575(n)/2]), written in binary.

Original entry on oeis.org

0, 0, 10, 1100, 1000110, 110011000, 100101001010, 11011000100100, 10011101110001110, 1110010111100110000, 1010011101111110010010, 111101000000111000111100, 101100011100111010111010110
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A203719 A204521(n)^2 = floor[A055812(n)/5]: Squares which written in base 5, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 16, 64, 441, 3025, 5184, 20736, 142129, 974169, 1669264, 6677056, 45765225, 313679521, 537497856, 2149991424, 14736260449, 101003831721, 173072640400, 692290561600, 4745030099481, 32522920134769, 55728852710976, 222915410843904
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-5 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=5;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 323*a(n-4)-323*a(n-8)+a(n-12) for n>13. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^9 +9*x^8 +64*x^7 +16*x^6 +118*x^5 +118*x^4 +64*x^3 +16*x^2 +9*x +1) / ((x -1)*(x +1)*(x^2 -4*x -1)*(x^2 +1)*(x^2 +4*x -1)*(x^4 +18*x^2 +1)). - Colin Barker, Sep 20 2014

Extensions

More terms from Colin Barker, Sep 20 2014

A204573 A204519(n)^2 = floor(A055851(n)/6): Squares which written in base 6, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 121, 400, 1600, 11881, 39204, 156816, 1164241, 3841600, 15366400, 114083761, 376437604, 1505750416, 11179044361, 36887043600, 147548174400, 1095432263641, 3614553835204, 14458215340816, 107341182792481, 354189388806400, 1416757555225600
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-6 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=6;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 99*a(n-3)-99*a(n-6)+a(n-9) for n>10. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^6+16*x^5+4*x^4+22*x^3+16*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 20 2014

A204574 Numbers such that floor[a(n)^2/2] is a square (A001541), written in binary.

Original entry on oeis.org

0, 1, 11, 10001, 1100011, 1001000001, 110100100011, 100110010010001, 11011111001000011, 10100010100100000001, 1110110011011111000011, 1010110010010010110010001, 111110110111010100110100011, 101101110011001101010001000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Previous Showing 11-19 of 19 results.