cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A283559 Numbers k such that k![10]-2 is prime, where k![10] is the ten-fold multifactorial.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 21, 25, 29, 31, 33, 41, 45, 49, 77, 195, 197, 199, 211, 309, 319, 345, 349, 395, 509, 533, 539, 597, 615, 705, 781, 803, 869, 969, 1313, 1317, 1331, 1335, 1337, 1429, 1597, 2121, 2133, 2513, 2547, 2733, 2885, 2931, 3701, 3709, 4681, 5911, 5933, 6125, 8191, 10637, 10679, 10845, 14901, 15629, 17165, 21691, 21867, 23119, 27033, 28601, 31245, 31957, 33289, 35773, 45011, 51079, 63241, 81369, 92615
Offset: 1

Views

Author

Robert Price, Mar 10 2017

Keywords

Comments

a(76) > 50000.
The first 13 primes associated with this sequence: 2, 3, 5, 7, 37, 73, 229, 1873, 4957, 7159, 29599, 293599, 2953123.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[2, 50000], PrimeQ[MultiFactorial[#, 10] - 2] &]

Extensions

a(72)-a(75) from Robert Price, Apr 03 2017

A283594 Numbers k such that k![12]+2 is prime, where k![12] is the twelve-fold multifactorial.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 21, 27, 29, 39, 99, 159, 213, 249, 351, 443, 489, 513, 563, 705, 1059, 1599, 1733, 2361, 3699, 4263, 4451, 4479, 5141, 5751, 7355, 7461, 8525, 8861, 18231, 19629, 23571, 41789, 76973, 86997, 93735, 98943
Offset: 1

Views

Author

Robert Price, Mar 11 2017

Keywords

Comments

a(44) > 10^5.
The first 12 primes associated with this sequence: 3, 3, 5, 7, 11, 13, 47, 191, 1217, 2467, 47387.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 12] + 2] &]

Extensions

a(40)-a(43) from Robert Price, Mar 24 2017

A287207 Numbers k such that k![6] + 2 is prime, where k![6] = A085158(k) = sextuple factorial.

Original entry on oeis.org

0, 1, 3, 5, 9, 17, 27, 45, 51, 53, 93, 197, 213, 221, 245, 279, 845, 927, 2055, 2895, 3615, 5613, 12753, 15737, 17813, 18545, 22629, 47859, 48797
Offset: 1

Views

Author

Robert Price, May 21 2017

Keywords

Comments

a(30) > 50000.
The first 7 primes associated with this sequence: 3, 3, 5, 7, 29, 937, 229637.

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 2] &]
    Select[Range[0,10000],PrimeQ[Times@@Range[#,1,-6]+2]&] (* The program generates the first 22 terms of the sequence. *) (* Harvey P. Dale, Dec 27 2022 *)

A288370 Primes of the form k!10 + 2, where k!10 is the decuple factorial number (A288327).

Original entry on oeis.org

3, 5, 7, 11, 13, 41, 173, 233, 1877, 293603, 318482201, 3047775608243, 22045250515087152640289, 1302844523174285888671877, 930620100318118916029523201, 4831436058626442432403564453127, 2060356301148292483532951454058361, 9936127455089061347552058319626135203
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 10] + 2, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-10]+2,{n,200}],PrimeQ] (* Harvey P. Dale, May 26 2025 *)

Formula

a(n) = 2 + A288327(A204657(n+1)). - Elmo R. Oliveira, Feb 26 2025
Previous Showing 11-14 of 14 results.