A265559 Smallest base-2 palindrome m >= n, written in base 2.
0, 1, 11, 11, 101, 101, 111, 111, 1001, 1001, 1111, 1111, 1111, 1111, 1111, 1111, 10001, 10001, 10101, 10101, 10101, 10101, 11011, 11011, 11011, 11011, 11011, 11011, 11111, 11111, 11111, 11111, 100001, 100001, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 110011
Offset: 0
Crossrefs
Programs
-
Maple
ispal:= proc(n) global b; # test if n is base-b pallindrome local L, Ln, i; L:= convert(n, base, b); Ln:= nops(L); for i from 1 to floor(Ln/2) do if L[i] <> L[Ln+1-i] then return(false); fi; od: return(true); end proc; # find min pal >= n, write in base 10 big10:=proc(n) global b; local t1,t2,i,m,sw1,L1; t1:=convert(n,base,b); L1:=nops(t1); for m from n to 10*n do if ispal(m) then return(m); fi; od; lprint("no solution in big10 for n = ", n); end proc; # find min pal >= n, write in base 10 bigb:=proc(n) global b; local t1,t2,i,m,mb,sw1,L1; t1:=convert(n,base,b); L1:=nops(t1); for m from n to 10*n do if ispal(m) then t2:=convert(m,base,b); mb:=add(t2[i]*10^(i-1), i=1..nops(t2)); return(mb); fi; od; lprint("no solution in big10 for n = ", n); end proc; b:=2; [seq(big10(n),n=0..144)]; # A206914 [seq(bigb(n),n=0..144)]; # A265559
-
Mathematica
b2pal[n_]:=Module[{m=n},While[IntegerDigits[m,2]!=Reverse[IntegerDigits[m,2]],m++]; FromDigits[ IntegerDigits[m,2]]]; Array[b2pal,50,0] (* Harvey P. Dale, Feb 25 2024 *)