A218432
Sum of the 5th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 34, 520, 16076, 1379176, 120097552, 12801080384, 2000907273220, 548936782370416, 179067386842497176, 62826358527724433632, 25400850150874996376944, 12937006577192667715178720, 9081992531456407951744097536, 7967213735571969862638061300096
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^5, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^5, If[i < 1, 0, g[n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A218433
Sum of the 6th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 66, 1524, 86100, 19902600, 3965056200, 976304082600, 384973061999400, 347437227718904400, 365434181398477976400, 390696545168036224840800, 475968229571639505471170400, 784642922815221782474131569600, 2070759893211522247088843511422400
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^6, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^6, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A218434
Sum of the 7th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 130, 4504, 468956, 298313896, 134324703472, 76943411156480, 75584451935796484, 231249690461453112208, 784105479220668188046200, 2566797235899935973173794336, 9244479688068495046254956909968, 48983678227627955151056666560212512
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^7, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^7, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A218435
Sum of the 8th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 258, 13380, 2591940, 4582623240, 4616028796680, 6229088692170120, 15072293332114590600, 159846322935857039370000, 1733855206389212577000330000, 17554952499518858027710809780000, 183908030642450770233388352642100000
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^8, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^8, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A218436
Sum of the 9th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 514, 39880, 14508236, 71502130216, 159891388498192, 515576952451247744, 3043225095505808401540, 113662467332884035859383856, 3902474169746657778866025106136, 123694078552827146016863752849997152, 3719080702866914288727567048533259759664
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^9, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^9, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A218437
Sum of the 10th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 1026, 119124, 82094580, 1126524259080, 5563004909321160, 43453047082604239080, 620787527477497337506920, 82539616591562766578923554000, 8875098123308028836585309148354000, 891186933432311275150434427455009708000
Offset: 0
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, h(l)^10, `if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [l[], i]))))
end:
a:= n-> `if`(n=0, 1, g(n, n, [])):
seq(a(n), n=0..20);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^10, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)
A319607
Sum of the n-th powers of the numbers of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 10, 180, 16076, 19902600, 134324703472, 6229088692170120, 3043225095505808401540, 82539616591562766578923554000, 20307821456335470464284341150217960760, 48436056178178689690954566323758042309244664480
Offset: 0
-
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
g:= (n, i, k, l)-> `if`(n=0 or i=1, h([l[], 1$n])^k,
g(n, i-1, k, l)+g(n-i, min(i, n-i), k, [l[], i])):
a:= n-> g(n$3, []):
seq(a(n), n=0..15);