cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A218432 Sum of the 5th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 34, 520, 16076, 1379176, 120097552, 12801080384, 2000907273220, 548936782370416, 179067386842497176, 62826358527724433632, 25400850150874996376944, 12937006577192667715178720, 9081992531456407951744097536, 7967213735571969862638061300096
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=5 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^5, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^5, If[i < 1, 0, g[n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A218433 Sum of the 6th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 66, 1524, 86100, 19902600, 3965056200, 976304082600, 384973061999400, 347437227718904400, 365434181398477976400, 390696545168036224840800, 475968229571639505471170400, 784642922815221782474131569600, 2070759893211522247088843511422400
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=6 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^6, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^6, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A218434 Sum of the 7th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 130, 4504, 468956, 298313896, 134324703472, 76943411156480, 75584451935796484, 231249690461453112208, 784105479220668188046200, 2566797235899935973173794336, 9244479688068495046254956909968, 48983678227627955151056666560212512
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=7 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^7, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^7, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A218435 Sum of the 8th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 258, 13380, 2591940, 4582623240, 4616028796680, 6229088692170120, 15072293332114590600, 159846322935857039370000, 1733855206389212577000330000, 17554952499518858027710809780000, 183908030642450770233388352642100000
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=8 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^8, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^8, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A218436 Sum of the 9th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 514, 39880, 14508236, 71502130216, 159891388498192, 515576952451247744, 3043225095505808401540, 113662467332884035859383856, 3902474169746657778866025106136, 123694078552827146016863752849997152, 3719080702866914288727567048533259759664
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=9 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^9, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^9, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A218437 Sum of the 10th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 1026, 119124, 82094580, 1126524259080, 5563004909321160, 43453047082604239080, 620787527477497337506920, 82539616591562766578923554000, 8875098123308028836585309148354000, 891186933432311275150434427455009708000
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2012

Keywords

Crossrefs

Column k=10 of A208447.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, h(l)^10, `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i]))))
        end:
    a:= n-> `if`(n=0, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l]^10, If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, translated from Maple *)

A319607 Sum of the n-th powers of the numbers of standard Young tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 2, 10, 180, 16076, 19902600, 134324703472, 6229088692170120, 3043225095505808401540, 82539616591562766578923554000, 20307821456335470464284341150217960760, 48436056178178689690954566323758042309244664480
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2018

Keywords

Crossrefs

Main diagonal of A208447.

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
        l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
    g:= (n, i, k, l)-> `if`(n=0 or i=1, h([l[], 1$n])^k,
        g(n, i-1, k, l)+g(n-i, min(i, n-i), k, [l[], i])):
    a:= n-> g(n$3, []):
    seq(a(n), n=0..15);

Formula

a(n) = A208447(n,n).
Previous Showing 11-17 of 17 results.