A208600
Number of 6-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
Original entry on oeis.org
26, 297, 1564, 5457, 14838, 34153, 69784, 130401, 227314, 374825, 590580, 895921, 1316238, 1881321, 2625712, 3589057, 4816458, 6358825, 8273228, 10623249, 13479334, 16919145, 21027912, 25898785, 31633186, 38341161, 46141732, 55163249
Offset: 1
Some solutions for n=4:
-4 -4 -4 -3 -4 -2 -4 -4 -4 -4 -3 -4 -4 -3 -3 -1
4 3 2 2 -3 -2 -1 2 0 -1 3 4 2 -1 3 0
0 2 -1 3 -2 2 0 -3 4 2 -3 -2 1 2 0 -1
1 1 -3 0 3 0 -1 0 -1 1 3 0 3 -2 -2 0
-1 1 3 0 4 -2 4 3 4 4 -3 1 -2 4 0 -1
0 -3 3 -2 2 4 2 2 -3 -2 3 1 0 0 2 3
A208601
Number of 7-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
Original entry on oeis.org
57, 1163, 8671, 39019, 129823, 353333, 833253, 1764925, 3438877, 6267735, 10816499, 17836183, 28300819, 43447825, 64821737, 94321305, 134249953, 187369603, 256957863, 346868579, 461595751, 606340813, 787083277, 1010654741
Offset: 1
Some solutions for n=4:
-4 -2 -4 -4 -4 -3 -3 -4 -2 -4 -4 -3 -3 -3 -4 -4
-2 -2 3 1 -2 2 0 -4 2 -1 2 -1 0 1 2 2
3 1 2 -2 0 0 -1 -2 1 2 -2 0 1 0 -3 -4
1 2 1 0 3 2 2 1 1 -4 1 0 0 1 4 4
-2 -2 -1 2 3 -3 -1 1 -1 3 -3 -1 -2 -2 -4 1
1 1 -1 -1 -3 3 2 4 0 3 2 2 2 1 3 -2
3 2 0 4 3 -1 1 4 -1 1 4 3 2 2 2 3
A208602
Number of n-bead necklaces labeled with numbers -1..1 not allowing reversal, with sum zero.
Original entry on oeis.org
1, 2, 3, 6, 11, 26, 57, 142, 351, 902, 2333, 6166, 16381, 44046, 119183, 324862, 890291, 2453126, 6789309, 18869426, 52635789, 147325510, 413618615, 1164517198, 3287073461, 9300516890, 26372968983, 74937177538, 213333642443, 608400919106, 1737954608281
Offset: 1
All solutions for n=5:
.-1...-1...-1...-1...-1...-1...-1...-1....0...-1...-1
.-1....1....0...-1....0....0....0....0....0....1...-1
..1...-1....0....1....1...-1....1....0....0....0....0
..1....1....1....0...-1....1....0....0....0....0....1
..0....0....0....1....1....1....0....1....0....0....1
-
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 1]; Array[a, 31] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
Comments