cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A208714 Number of 7Xn 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

64, 8192, 470596, 32826932, 2197585152, 148378294612, 10001404535216, 674377684576244, 45469018462135036, 3065730121209679464, 206705069561616591752, 13936976009963742623304, 939692881392900459541604
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Row 7 of A208709

Examples

			Some solutions for n=4
..0..1..0..0....0..1..0..0....0..1..0..1....0..0..0..1....0..1..0..0
..1..1..1..1....1..1..0..0....0..1..0..0....0..1..1..1....1..0..1..1
..0..0..1..1....0..0..1..1....0..1..1..0....1..0..0..1....1..0..0..1
..1..1..0..0....1..0..1..1....0..0..1..0....1..1..1..0....1..1..1..0
..1..0..1..1....0..0..1..0....0..0..1..1....0..1..0..0....0..0..0..1
..1..1..0..0....0..1..0..0....1..0..0..0....0..1..0..0....0..1..0..1
..1..0..1..1....1..1..1..1....0..1..0..1....0..1..1..1....0..0..0..0
		

Formula

Empirical: a(n) = 65*a(n-1) +627*a(n-2) -30321*a(n-3) -153077*a(n-4) +5945575*a(n-5) +18847620*a(n-6) -640746940*a(n-7) -1246405727*a(n-8) +41621674173*a(n-9) +41928529920*a(n-10) -1682537371818*a(n-11) -485939889784*a(n-12) +42470072496810*a(n-13) -7922558403350*a(n-14) -670631027035048*a(n-15) +263270391431374*a(n-16) +6891425474219622*a(n-17) -2981854723927120*a(n-18) -47958233567951820*a(n-19) +19158642427965583*a(n-20) +233689019176978229*a(n-21) -80444594354181108*a(n-22) -818697039909889268*a(n-23) +236932769597213271*a(n-24) +2103792244691072929*a(n-25) -510796859975575345*a(n-26) -4022353774281500743*a(n-27) +828086071154701580*a(n-28) +5775946939404815328*a(n-29) -1026257054012229820*a(n-30) -6261507257443570876*a(n-31) +981060297866884393*a(n-32) +5132543866827487875*a(n-33) -726522411180908276*a(n-34) -3176069805803038448*a(n-35) +417716564447897336*a(n-36) +1476876535603317556*a(n-37) -186762327908567644*a(n-38) -511997227744881276*a(n-39) +64892478481747971*a(n-40) +130748670223110539*a(n-41) -17389966007346019*a(n-42) -24152905795977169*a(n-43) +3524834326494224*a(n-44) +3136398901415920*a(n-45) -522475730056453*a(n-46) -272599169920989*a(n-47) +53880467491068*a(n-48) +14382008342084*a(n-49) -3588181598882*a(n-50) -348878204572*a(n-51) +135362926032*a(n-52) -2053245952*a(n-53) -2067930688*a(n-54) +201866496*a(n-55) -5564416*a(n-56) for n>61
Previous Showing 11-11 of 11 results.