A210289
Number of 2 X 2 matrices with all elements in {0,1,...,n} and permanent = (trace)^2.
Original entry on oeis.org
1, 5, 9, 15, 25, 29, 35, 53, 63, 81, 85, 89, 107, 141, 159, 165, 193, 197, 215, 261, 271, 323, 327, 331, 349, 389, 423, 461, 529, 533, 539, 617, 645, 651, 655, 673, 727, 817, 863, 959, 969, 973, 1025, 1131, 1141, 1159
Offset: 0
-
a = 0; b = n; z1 = 45;
t[n_] := t[n] = Flatten[Table[w^2 + z^2 + w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A210289 *)
A210376
Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n + 4.
Original entry on oeis.org
0, 0, 10, 40, 85, 140, 206, 284, 375, 480, 600, 736, 889, 1060, 1250, 1460, 1691, 1944, 2220, 2520, 2845, 3196, 3574, 3980, 4415, 4880, 5376, 5904, 6465, 7060, 7690, 8356, 9059, 9800, 10580, 11400, 12261, 13164, 14110, 15100, 16135, 17216
Offset: 0
-
a = 0; b = n; z1 = 45;
t[n_] := t[n] = Flatten[Table[w + x + y + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n + 4], {n, 0, z1}] (* A210376 *)
Table[c[n, 3 n - 4], {n, 0, z1}] (* A210376 *)
A211058
Number of 2 X 2 matrices having all terms in {1,...,n} and nonnegative determinant.
Original entry on oeis.org
1, 11, 48, 144, 337, 691, 1256, 2128, 3385, 5139, 7480, 10584, 14521, 19499, 25664, 33184, 42209, 53027, 65736, 80680, 98009, 117979, 140816, 166936, 196441, 229715, 267056, 308816, 355185, 406755, 463576, 526264, 595081, 670419
Offset: 1
-
g:= proc(n) local T,a,b,t,i,r;
T:= Vector(n^2):
for a from 1 to n do T[a^2]:= 1 od:
for a from 1 to n-1 do for b from a+1 to n do
T[a*b]:= T[a*b]+2
od od;
r:= n^2;
t:= T[1]*r;
for i from 2 to n^2 do
r:= r - T[i-1];
t:= t + T[i]*r;
od;
t
end proc:
g(1):= 1:
map(g, [$1..40]); # Robert Israel, Sep 06 2024
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
Table[c1[n, n^2], {n, 1, z1}] (* A211058 *)
A211060
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >n.
Original entry on oeis.org
0, 1, 12, 53, 158, 361, 740, 1326, 2235, 3524, 5361, 7711, 10926, 14941, 20011, 26217, 33964, 43007, 54094, 66834, 81956, 99455, 119872, 142543, 169036, 198791, 232419, 269781, 312224, 358359, 410670, 467577, 530755, 599962, 676006
Offset: 1
-
a = 1; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
Table[c1[n, n^2] - c1[n, n], {n, 1, z1}]
A211061
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >= n.
Original entry on oeis.org
0, 3, 19, 69, 181, 411, 785, 1419, 2334, 3674, 5478, 7994, 11093, 15249, 20347, 26660, 34253, 43661, 54463, 67637, 82614, 100217, 120415, 143935, 169815, 199883, 233505, 271344, 313103, 360519, 411681, 469615, 532407, 601850, 677764
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
Table[c1[n, n^2] - c1[n, n - 1], {n, 1, z1}]
A211145
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and permanent=trace.
Original entry on oeis.org
1, 19, 60, 116, 196, 292, 404, 548, 708, 868, 1060, 1284, 1524, 1796, 2052, 2292, 2612, 2980, 3348, 3748, 4116, 4452, 4884, 5380, 5844, 6324, 6820, 7300, 7860, 8468, 9060, 9732, 10388, 10964, 11572, 12180, 12852, 13668, 14436, 15092
Offset: 0
-
a = -n; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w + z - w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A211145 *)
(1/4) Table[c[n, n], {n, 2, z1}] (* integers *)
A211148
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and positive determinant.
Original entry on oeis.org
24, 248, 1056, 3008, 6904, 13624, 24448, 40576, 63640, 95288, 137632, 192384, 262392, 349688, 457088, 587520, 744344, 930104, 1149152, 1404160, 1699640, 2039544, 2428352, 2869312, 3368472, 3929912, 4558688, 5259712, 6039480
Offset: 1
-
a = -n; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 1, z1}] (* A209981 *)
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 1, m}]
t = Table[c1[n, 2*n^2], {n, 1, z1}] (* A211148 *)
2 t (* A211149 *)
t/8 (* integers *)
A211149
Number of 2 X 2 nonsingular matrices having all terms in {-n,...,0,...,n}.
Original entry on oeis.org
48, 496, 2112, 6016, 13808, 27248, 48896, 81152, 127280, 190576, 275264, 384768, 524784, 699376, 914176, 1175040, 1488688, 1860208, 2298304, 2808320, 3399280, 4079088, 4856704, 5738624, 6736944, 7859824, 9117376, 10519424
Offset: 1
-
a = -n; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 1, z1}] (* A209981 *)
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 1, m}]
t = Table[c1[n, 2*n^2], {n, 1, z1}] (* A211148 *)
2 t (* A211149 *)
t/8 (* integers *)
A211154
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even determinant.
Original entry on oeis.org
1, 41, 457, 1345, 4481, 8521, 18985, 30017, 54721, 78121, 126281, 168961, 252097, 322505, 454441, 562561, 759425, 916777, 1197001, 1416641, 1800961, 2097481, 2608937, 2998465, 3662401, 4162601, 5006665, 5636737, 6690881, 7471561, 8768041, 9721601, 11294977, 12445225, 14332361, 15704641
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
-
seq((2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n), n=1..20); # Mark van Hoeij, May 13 2013
-
a = -n; b = n; z1 = 20;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A211154 *)
Table[v[n], {n, 1, z1}] (* A211155 *)
-
a(n)=(2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n); \\ Joerg Arndt, May 14 2013
A281315
Number of 2 X 2 matrices with all elements in {0,...,n} and prime determinant.
Original entry on oeis.org
0, 0, 13, 46, 83, 191, 272, 509, 687, 1010, 1291, 2019, 2364, 3468, 4132, 5079, 6072, 8298, 9234, 12189, 13621, 15984, 18095, 22965, 24886, 29942, 33248, 38385, 42073, 51053, 53882, 64609, 70619, 78663, 85424, 96024, 101521, 118804, 127940, 140598, 149375, 172123, 179424, 205334, 218216
Offset: 0
For n = 3, a few of the possible matrices are [1,0;3,3], [1,1;0,2], [1,1;0,3], [1,1;1,3], [1,2;0,2], [1,2;0,3], [1,3;0,2], [1,3;0,3], [2,0;0,1], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,1;0,1], [2,1;1,2], [2,1;1,3], [3,1;3,2], [3,2;0,1], [3,2;1,3], [3,2;2,2], [3,2;2,3], ... There are 46 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d], where a= M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2]. So, a(3) = 46.
-
from sympy import isprime
def t(n):
s=0
for a in range(n+1):
for d in range(n+1):
ad = a * d
for c in range(n+1):
for b in range(n+1):
if isprime(ad-b*c):
s+=1
return s
for i in range(187):
print(str(i)+" "+str(t(i)))
-
def A281315(n):
T = Tuples([i for i in range(n+1)], 4); i = 0
for t in T: i += is_prime(t[0]*t[3]-t[1]*t[2])
return i
[A281315(n) for n in range(20)] # Peter Luschny, Jul 23 2017
Comments