cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 100 results. Next

A210289 Number of 2 X 2 matrices with all elements in {0,1,...,n} and permanent = (trace)^2.

Original entry on oeis.org

1, 5, 9, 15, 25, 29, 35, 53, 63, 81, 85, 89, 107, 141, 159, 165, 193, 197, 215, 261, 271, 323, 327, 331, 349, 389, 423, 461, 529, 533, 539, 617, 645, 651, 655, 673, 727, 817, 863, 959, 969, 973, 1025, 1131, 1141, 1159
Offset: 0

Views

Author

Clark Kimberling, Mar 19 2012

Keywords

Comments

See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w^2 + z^2 + w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 0, z1}]  (* A210289 *)

A210376 Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n + 4.

Original entry on oeis.org

0, 0, 10, 40, 85, 140, 206, 284, 375, 480, 600, 736, 889, 1060, 1250, 1460, 1691, 1944, 2220, 2520, 2845, 3196, 3574, 3980, 4415, 4880, 5376, 5904, 6465, 7060, 7690, 8356, 9059, 9800, 10580, 11400, 12261, 13164, 14110, 15100, 16135, 17216
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

A210376 is also the number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = 3n - 4.
See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w + x + y + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n + 4], {n, 0, z1}]    (* A210376 *)
    Table[c[n, 3 n - 4], {n, 0, z1}]  (* A210376 *)

Formula

Conjectures from Colin Barker, Dec 07 2017: (Start)
G.f.: x^2*(10 - 15*x^2 + 6*x^4) / (1 - x)^4.
a(n) = (-270 + 107*n + 18*n^2 + n^3) / 6 for n>2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A211058 Number of 2 X 2 matrices having all terms in {1,...,n} and nonnegative determinant.

Original entry on oeis.org

1, 11, 48, 144, 337, 691, 1256, 2128, 3385, 5139, 7480, 10584, 14521, 19499, 25664, 33184, 42209, 53027, 65736, 80680, 98009, 117979, 140816, 166936, 196441, 229715, 267056, 308816, 355185, 406755, 463576, 526264, 595081, 670419
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Maple
    g:= proc(n) local T,a,b,t,i,r;
      T:= Vector(n^2):
      for a from 1 to n do T[a^2]:= 1 od:
      for a from 1 to n-1 do for b from a+1 to n do
        T[a*b]:= T[a*b]+2
      od od;
      r:= n^2;
      t:= T[1]*r;
      for i from 2 to n^2 do
        r:= r - T[i-1];
        t:= t + T[i]*r;
      od;
      t
    end proc:
    g(1):= 1:
    map(g, [$1..40]); # Robert Israel, Sep 06 2024
  • Mathematica
    a = 1; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2], {n, 1, z1}]   (* A211058 *)

A211060 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >n.

Original entry on oeis.org

0, 1, 12, 53, 158, 361, 740, 1326, 2235, 3524, 5361, 7711, 10926, 14941, 20011, 26217, 33964, 43007, 54094, 66834, 81956, 99455, 119872, 142543, 169036, 198791, 232419, 269781, 312224, 358359, 410670, 467577, 530755, 599962, 676006
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 1; b = n; z1 = 40;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c1[n, n], {n, 1, z1}]

A211061 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >= n.

Original entry on oeis.org

0, 3, 19, 69, 181, 411, 785, 1419, 2334, 3674, 5478, 7994, 11093, 15249, 20347, 26660, 34253, 43661, 54463, 67637, 82614, 100217, 120415, 143935, 169815, 199883, 233505, 271344, 313103, 360519, 411681, 469615, 532407, 601850, 677764
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 1; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c1[n, n - 1], {n, 1, z1}]

A211145 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and permanent=trace.

Original entry on oeis.org

1, 19, 60, 116, 196, 292, 404, 548, 708, 868, 1060, 1284, 1524, 1796, 2052, 2292, 2612, 2980, 3348, 3748, 4116, 4452, 4884, 5380, 5844, 6324, 6820, 7300, 7860, 8468, 9060, 9732, 10388, 10964, 11572, 12180, 12852, 13668, 14436, 15092
Offset: 0

Views

Author

Clark Kimberling, Apr 03 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 40;
    t[n_] := t[n] = Flatten[Table[w + z - w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 0, z1}]   (* A211145 *)
    (1/4) Table[c[n, n], {n, 2, z1}] (* integers *)

A211148 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and positive determinant.

Original entry on oeis.org

24, 248, 1056, 3008, 6904, 13624, 24448, 40576, 63640, 95288, 137632, 192384, 262392, 349688, 457088, 587520, 744344, 930104, 1149152, 1404160, 1699640, 2039544, 2428352, 2869312, 3368472, 3929912, 4558688, 5259712, 6039480
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 30;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 1, z1}]   (* A209981 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 1, m}]
    t = Table[c1[n, 2*n^2], {n, 1, z1}]   (* A211148 *)
    2 t   (* A211149 *)
    t/8   (* integers *)

A211149 Number of 2 X 2 nonsingular matrices having all terms in {-n,...,0,...,n}.

Original entry on oeis.org

48, 496, 2112, 6016, 13808, 27248, 48896, 81152, 127280, 190576, 275264, 384768, 524784, 699376, 914176, 1175040, 1488688, 1860208, 2298304, 2808320, 3399280, 4079088, 4856704, 5738624, 6736944, 7859824, 9117376, 10519424
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2012

Keywords

Comments

A211149(n) + A209981(n) = (2n+1)^4 for n>0.
It appears that 16 divides A211149(n).
For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 30;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 1, z1}]   (* A209981 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 1, m}]
    t = Table[c1[n, 2*n^2], {n, 1, z1}]   (* A211148 *)
    2 t   (* A211149 *)
    t/8   (* integers *)

A211154 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even determinant.

Original entry on oeis.org

1, 41, 457, 1345, 4481, 8521, 18985, 30017, 54721, 78121, 126281, 168961, 252097, 322505, 454441, 562561, 759425, 916777, 1197001, 1416641, 1800961, 2097481, 2608937, 2998465, 3662401, 4162601, 5006665, 5636737, 6690881, 7471561, 8768041, 9721601, 11294977, 12445225, 14332361, 15704641
Offset: 0

Views

Author

Clark Kimberling, Apr 05 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Maple
    seq((2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n), n=1..20); # Mark van Hoeij, May 13 2013
  • Mathematica
    a = -n; b = n; z1 = 20;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
    v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 1, z1}] (* A211154 *)
    Table[v[n], {n, 1, z1}] (* A211155 *)
  • PARI
    a(n)=(2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n); \\ Joerg Arndt, May 14 2013

Formula

a(n) + A211155(n) = (2n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-x^8 - 36*x^6 - 416*x^5 - 734*x^4 - 1472*x^3 - 724*x^2 - 416*x - 41)/((x - 1)^5*(x + 1)^4). (End)

Extensions

More terms from Joerg Arndt, May 14 2013
a(0)=1 prepended by Andrew Howroyd, May 05 2020

A281315 Number of 2 X 2 matrices with all elements in {0,...,n} and prime determinant.

Original entry on oeis.org

0, 0, 13, 46, 83, 191, 272, 509, 687, 1010, 1291, 2019, 2364, 3468, 4132, 5079, 6072, 8298, 9234, 12189, 13621, 15984, 18095, 22965, 24886, 29942, 33248, 38385, 42073, 51053, 53882, 64609, 70619, 78663, 85424, 96024, 101521, 118804, 127940, 140598, 149375, 172123, 179424, 205334, 218216
Offset: 0

Views

Author

Indranil Ghosh, Jan 20 2017

Keywords

Examples

			For n = 3, a few of the possible matrices are [1,0;3,3], [1,1;0,2], [1,1;0,3], [1,1;1,3], [1,2;0,2], [1,2;0,3], [1,3;0,2], [1,3;0,3], [2,0;0,1], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,1;0,1], [2,1;1,2], [2,1;1,3], [3,1;3,2], [3,2;0,1], [3,2;1,3], [3,2;2,2], [3,2;2,3], ... There are 46 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d], where a= M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2]. So, a(3) = 46.
		

Crossrefs

Cf. A210000.

Programs

  • Python
    from sympy import isprime
    def t(n):
        s=0
        for a in range(n+1):
            for d in range(n+1):
                ad = a * d
                for c in range(n+1):
                    for b in range(n+1):
                        if isprime(ad-b*c):
                            s+=1
        return s
    for i in range(187):
        print(str(i)+" "+str(t(i)))
    
  • Sage
    def A281315(n):
        T = Tuples([i for i in range(n+1)], 4); i = 0
        for t in T: i += is_prime(t[0]*t[3]-t[1]*t[2])
        return i
    [A281315(n) for n in range(20)] # Peter Luschny, Jul 23 2017
Previous Showing 41-50 of 100 results. Next