A219192 Area A of the bicentric quadrilaterals such that A, the sides, the radius of the circumcircle and the radius of the incircle are integers.
2352, 9408, 21168, 37632, 58800, 69360, 84672, 115248, 150528, 190512, 235200, 253920, 277440, 284592, 338688, 397488, 460992, 529200, 602112, 624240, 645792, 679728, 762048, 849072, 940800, 1015680, 1037232, 1109760, 1138368, 1244208, 1354752, 1470000, 1589952
Offset: 1
Keywords
Examples
2352 is in the sequence because, with sides (a,b,c,d) = (56,56,42,42) we obtain : s = (56+56+42+42)/2 = 98; A = sqrt(56*56*42*42) = 2352 = sqrt((98-56)(98-56)(98-42)(98-42)) (Brahmagupta’s Formula); r = 2352/(56+42) =24. R = sqrt((56*56+42*42)(56*42+56*42)(56*42+56*42))/(4*2352) = 35.
Links
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69, 149, 1996.
- Martin Josefsson, The area of a Bicentric Quadrilateral, Forum Geometricum (2011) 11:155-164.
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
- Eric Weisstein's World of Mathematics, Bicentric Quadrilateral
Programs
-
Maple
with(numtheory):nn:=15000:for a from 1 to nn do: b:=a: for c from b to nn do: for d from c to c while(sqrt(a*b*c*d)=floor(sqrt(a*b*c*d))) do:s:=(a+b+c+d)/2:a1:=(s-a)*(s-b)*(s-c)*(s-d):a2:=sqrt(a*b*c*d):r1:=a2/(a+c):r2:=a2/(b+d):rr:= sqrt((a*b+c*d) * (a*c+b*d) * (a*d+b*c))/(4*a2):if a1>0 and floor(sqrt(a1))=sqrt(a1) and a2 =floor(a2) and a2=sqrt(a1) and r1=floor(r1) and r2=floor(r2) and r1=r2 and rr =floor(rr) then printf ( "%d %d %d %d %d %d %d\n",a2,a,b,c,d,r1,rr):else fi:od:od:od:
-
Mathematica
nn=15000;lst={};Do[s=(2*a+2*d)/2;If[IntegerQ[s],area2=(s-a)*(s-a)*(s-d)*(s-d);area22=a*a*d*d;If[0
Comments