cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A217304 Minimal natural number (in decimal representation) with n prime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 7, 11, 23, 43, 93, 151, 239, 373, 479, 727, 1495, 2015, 2775, 5591, 6133, 7919, 12271, 22367, 24303, 30431, 48991, 89527, 95607, 98143, 129887, 357883, 358111, 382431, 744797, 519551, 1431007, 1432447, 1556319, 2457439
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=4*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 4^j = 2*(4^n - 1)/3 or m(n)=1, 2, 22, 222, 2222, 22222, …,for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-4 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 4. a(1) = 2 is the only even term.

Examples

			a(1) = 2 = 2_4, since 2 is the least number with 1 prime substring in base-4 representation.
a(2) = 7 = 13_4, since 7 is the least number with 2 prime substrings in base-4 representation (3_4=3 and 13_4=7).
a(3) = 11 = 23_4, since 11 is the least number with 3 prime substrings in base-4 representation (2_4, 3_4, and 23_4).
a(5) = 43 = 223_4, since 43 is the least number with 5 prime substrings in base-4 representation (2 times 2_4, 3_4, 23_4=11, and 223_4=43).
a(7) = 151 = 2113_4, since 151 is the least number with 7 prime substrings in base-4 representation (2 times 2_4, 3_4, 11_4=5, 13_4=7, 113_4=23, and 2113_4=151).
		

Crossrefs

Formula

a(n) > 4^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= 2*(4^n - 1)/3, n>0.
a(n+1) <= 4*a(n) + 2.

A217305 Minimal natural number (in decimal representation) with n prime substrings in base-5 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 7, 13, 37, 88, 67, 192, 317, 932, 942, 1567, 4663, 4692, 8442, 23317, 23442, 36067, 102217, 114192, 180337, 192317, 511087, 901682, 582942, 2495443, 2555436, 2536067, 5289942, 12321061, 12680337, 12301692, 26461592, 61508461, 61508462, 63885918
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=5*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 5^j = (5^n - 1)/2 or m(n)=1, 2, 22, 222, 2222, 22222,…, (in base-5) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-5 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be a prime number.
No term is divisible by 5.

Examples

			a(1) = 2 = 2_5, since 2 is the least number with 1 prime substring in base-5 representation.
a(2) = 7 = 12_5, since 7 is the least number with 2 prime substrings in base-5 representation (2_5 and 12_5=7).
a(3) = 13 = 23_5, since 13 is the least number with 3 prime substrings in base-5 representation (2_5, 3_5, and 23_5).
a(4) = 37 = 122_5, since 37 is the least number with 4 prime substrings in base-5 representation (2 times 2_5, 12_5=7, and 122_5=37).
a(7) = 192 = 1232_5, since 192 is the least number with 7 prime substrings in base-5 representation (2 times 2_5, 3_5, 12_5=7, 23_5=13, 32_5=17, and 232_5=67).
		

Crossrefs

Formula

a(n) > 5^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= (5^n - 1)/2, n>0.

A217306 Minimal natural number (in decimal representation) with n prime substrings in base-6 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 11, 17, 47, 83, 269, 263, 479, 839, 1559, 1579, 2999, 5039, 9355, 9479, 14759, 56131, 56135, 61343, 56879, 336791, 341351, 336815, 341279, 341275, 2020727, 2020895, 2047651, 2020891, 4055159, 12098587, 12125347, 12285907, 15737755, 19128523, 39190247
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=6*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 6^j = 2*(6^n - 1)/5 or m(n)=1, 2, 22, 222, 2222, 22222, …, (in base-6) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-6 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 6.

Examples

			a(1) = 2 = 2_6, since 2 is the least number with 1 prime substring in base-6 representation.
a(2) = 11 = 15_6, since 11 is the least number with 2 prime substrings in base-6 representation (5_6=5 and 15_6=11).
a(3) = 17 = 25_6, since 17 is the least number with 3 prime substrings in base-6 representation (2_6, 5_6, and 25_6).
a(4) = 47 = 115_6, since 47 is the least number with 4 prime substrings in base-6 representation (5_6, 11_6=7, 15_6=11, and 115_6=47).
a(8) = 479 = 2115_6, since 479 is the least number with 8 prime substrings in base-6 representation (2_6, 5_6, 11_6=7, 15_6=11, 21_6=13, 115_6=47, 211_6=79, and 2115_6=479).
		

Crossrefs

Formula

a(n) > 6^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= 2*(6^n - 1)/5, n>0.
a(n+1) <= 6*a(n)+2.

A217307 Minimal natural number (in decimal representation) with n prime substrings in base-7 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 16, 17, 115, 121, 509, 821, 3251, 4721, 5749, 22760, 25301, 41673, 142950, 173819, 291714, 920561, 1222716, 2041709, 4450031, 8559017, 9350687, 14295199, 31150219, 50568439, 71502954, 100066398, 218051538, 353979075, 500526787, 702815371, 1512442643
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=7*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 7^j = (7^n - 1)/3 or m(n)=1, 2, 22, 222, 2222, 22222,…, (in base-7) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-7 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 7.

Examples

			a(1) = 2 = 2_7, since 2 is the least number with 1 prime substring in base-7 representation.
a(2) = 16 = 22_7, since 16 is the least number with 2 prime substrings in base-7 representation (2 times 2_7=2).
a(3) = 17 = 23_7, since 17 is the least number with 3 prime substrings in base-7 representation (2_7, 3_7, and 23_7).
a(5) = 121 = 232_7, since 121 is the least number with 5 prime substrings in base-7 representation (2 times 2_7, 3_7, 23_7=17, and 32_7=23).
a(6) = 509 = 1325_7, since 509 is the least number with 6 prime substrings in base-7 representation (2_7, 3_7, 5_7, 25_7=19, 32_7=23, and 1325_7=509).
		

Crossrefs

Formula

a(n) > 7^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= (7^n - 1)/3, n>0.
a(n+1) <= 7*a(n) + 2.

A211683 Numbers > 100 such that all the substrings of length = 2 are primes.

Original entry on oeis.org

111, 113, 117, 119, 131, 137, 171, 173, 179, 197, 231, 237, 297, 311, 313, 317, 319, 371, 373, 379, 411, 413, 417, 419, 431, 437, 471, 473, 479, 531, 537, 597, 611, 613, 617
Offset: 1

Views

Author

Hieronymus Fischer, Jun 08 2012

Keywords

Comments

Only numbers > 100 are considered, since all 2-digit primes are trivial members. See A069488 for the sequence with prime terms > 100.
The sequence is infinite (for example, consider the continued concatenation of ‘11’ or of ‘13’: 111, 1111, 11111, ..., 131, 1313, 13131, ... are members).
Infinitely many terms are palindromic.

Examples

			a(2)=113, since all substrings of length = 2 are primes (11 and 13).
a(10)=197, since all substrings of length = 2 (19, 97) are primes.
		

Crossrefs

A211686 Prime numbers > 10000 such that all the substrings of length >= 4 are primes (substrings with leading '0' are considered to be nonprime).

Original entry on oeis.org

11093, 11171, 11933, 12011, 12239, 12377, 12791, 12917, 13037, 13217, 13613, 14519, 14591, 14813, 14831, 15233, 15791, 16073, 16091, 16217, 16673, 16691, 17333, 17417, 17477, 18233, 18311, 18713, 18719, 18731, 19013, 19319, 19739, 19973, 21319
Offset: 1

Views

Author

Hieronymus Fischer, Jun 08 2012

Keywords

Comments

Only numbers > 10000 are considered, since all 4-digit primes are trivial members.
By definition, each term of the sequence with more than 5 digits is built up by an overlapped union of previous terms, i.e., a(254)=182339 has the two embedded previous terms a(26)=18233 and a(208)=82339.
The sequence is finite, the last term is 934919 (n=263). Proof of finiteness: Let p be a number with more than 6 digits. By the argument above, each 6-digit substring must be a previous term. The only 6-digit terms are 182339, 349199, 432713, 487793, 511933, 654799, 782339, 787793, 917333, 934919 (n=254..263, see b-file). As can be directly verified, none of them can be extended to a 7-digit number with the desired property.

Examples

			a(1)=11093, since all substrings of length >= 4 are primes (1109, 1093, and 11093).
a(263)=934919, all substrings of length >= 4 (9349, 3491, 4919, 93491, 34919 and 934919) are primes.
		

Crossrefs

Programs

  • Mathematica
    sspQ[n_]:=Module[{idn=IntegerDigits[n],s1,s2},s1=FromDigits[Most[idn]];s2=FromDigits[Rest[idn]];IntegerLength[s1]==IntegerLength[s2]==4 && AllTrue[{s1,s2},PrimeQ]]; Select[Prime[Range[1230,9592]],sspQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* The program generates all 253 five-digit terms of the sequence *)(* Harvey P. Dale, May 11 2018 *)

A213308 Numbers with exactly one nonprime substring (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 4, 6, 8, 9, 13, 17, 22, 25, 27, 29, 31, 32, 33, 35, 43, 47, 52, 55, 57, 59, 67, 71, 72, 75, 77, 79, 83, 97, 137, 173, 223, 233, 237, 313, 317, 337, 353, 379, 523, 537, 673, 733, 737, 773, 797, 1373, 3137, 3373, 3733, 3797
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 5-digit number has at least 2 nonprime substrings. Thus, each number with more than 5 digits has >= 2 nonprime substrings, too. Consequently, there is a boundary b<10^4, such that all numbers > b have at least 2 nonprime substrings.
The first term is a(1)=1=A213302(1). The last term is a(51)=3797=A213300(1).

Examples

			a(1)=1, since 1 has one nonprime substring.
a(51)=3797, since the only nonprime substring of 3797 is 9.
		

Crossrefs

A213309 Numbers with exactly 2 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

11, 12, 15, 19, 20, 21, 24, 26, 28, 30, 34, 36, 38, 39, 41, 42, 45, 50, 51, 54, 56, 58, 61, 62, 63, 65, 70, 74, 76, 78, 82, 85, 87, 89, 92, 93, 95, 113, 131, 179, 197, 227, 229, 231, 232, 235, 239, 253, 257, 271, 273, 277, 283
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings. Thus, each number with more than 6 digits has >= 4 nonprime substrings, too. Consequently, there is a boundary b<10^5, such that all numbers > b have more than 2 nonprime substrings.
The first term is a(1)=11=A213302(2). The last term is a(130)=37337=A213300(2).

Examples

			a(1)=11, since 11 has 2 nonprime substrings.
a(130)= 37337, since there are 2 nonprime substrings (33 and 337).
		

Crossrefs

A213310 Numbers with exactly 3 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

10, 14, 16, 18, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 81, 84, 86, 88, 90, 91, 94, 96, 98, 99, 117, 123, 127, 132, 133, 135, 139, 153, 157, 167, 171, 172, 175, 177, 193, 211, 213, 217, 222, 225, 230, 234, 236, 238, 241
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings. Thus, each number with more than 6 digits has >= 4 nonprime substrings, too. Consequently, there is a boundary b<10^5, such that all numbers > b have more than 3 nonprime substrings.
The first term is a(1)=10=A213302(3). The last term is a(310)=73373=A213300(3).

Examples

			a(1)=10, since 10 has 3 nonprime substrings (0, 1, 10).
a(310)= 73373, since there are 3 nonprime substrings (33, 7337 and 73373).
		

Crossrefs

A213311 Numbers with exactly 4 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

103, 107, 111, 112, 115, 119, 122, 125, 129, 130, 134, 136, 138, 143, 147, 151, 152, 155, 159, 163, 170, 174, 176, 178, 183, 191, 192, 195, 199, 202, 203, 205, 207, 212, 215, 219, 220, 221, 224, 226, 228, 242, 245, 250
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings, and each 4-digit number has at least 1 nonprime substring. Thus, each 10-digit number has at least 5 nonprime substrings. Consequently, there is a boundary b, such that all numbers >= b have more than 4 nonprime substrings.
The first term is a(1)=103=A213302(4). The last term is a(653)=373379=A213300(4).

Examples

			a(1) = 103, since 103 has 4 nonprime substrings (0, 03, 1, 10).
a(653) = 373379, since there are 4 nonprime substrings (9, 33, 3379, 7337).
		

Crossrefs

Previous Showing 31-40 of 53 results. Next