cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A211800 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^2 < x^2 + y^2.

Original entry on oeis.org

0, 3, 13, 32, 64, 113, 181, 272, 388, 535, 713, 926, 1180, 1475, 1815, 2204, 2646, 3141, 3695, 4312, 4992, 5741, 6563, 7460, 8432, 9485, 10625, 11850, 13166, 14579, 16089, 17696, 19410, 21233, 23161, 25204, 27366, 29647, 32051, 34580
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 2 of A211802; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A211802.)

Extensions

Definition corrected by Georg Fischer, Sep 10 2022

A211803 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2>=x^2+y^2.

Original entry on oeis.org

1, 5, 14, 32, 61, 103, 162, 240, 341, 465, 618, 802, 1017, 1269, 1560, 1892, 2267, 2691, 3164, 3688, 4269, 4907, 5604, 6364, 7193, 8091, 9058, 10102, 11223, 12421, 13702, 15072, 16527, 18071, 19714, 21452, 23287, 25225, 27268, 29420
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 2 of A211805; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A211805.)

A211804 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^3>=x^3+y^3.

Original entry on oeis.org

1, 5, 14, 30, 57, 99, 156, 230, 323, 441, 588, 762, 965, 1199, 1476, 1792, 2149, 2547, 2990, 3488, 4039, 4643, 5300, 6012, 6797, 7645, 8558, 9540, 10591, 11729, 12944, 14236, 15607, 17065, 18620, 20262, 21993, 23817, 25746, 27778, 29915
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 3 of A211805; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A211805.)

A211806 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2<=x^2+y^2.

Original entry on oeis.org

1, 5, 16, 36, 69, 119, 190, 282, 399, 547, 726, 940, 1195, 1493, 1834, 2224, 2669, 3165, 3720, 4338, 5021, 5771, 6596, 7494, 8467, 9521, 10662, 11890, 13207, 14621, 16134, 17742, 19457, 21283, 23214, 25258, 27421, 29703, 32108, 34638
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 2 of A211808; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A211808.)

A211810 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2>x^2+y^2.

Original entry on oeis.org

0, 3, 11, 28, 56, 97, 153, 230, 330, 453, 605, 788, 1002, 1251, 1541, 1872, 2244, 2667, 3139, 3662, 4240, 4877, 5571, 6330, 7158, 8055, 9021, 10062, 11182, 12379, 13657, 15026, 16480, 18021, 19661, 21398, 23232, 25169, 27211, 29362, 31618
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 2 of A182259; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A182259.)

A211811 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^3>x^3+y^3.

Original entry on oeis.org

0, 3, 11, 26, 52, 93, 149, 222, 314, 431, 577, 750, 952, 1185, 1461, 1776, 2132, 2529, 2971, 3468, 4018, 4621, 5277, 5988, 6772, 7619, 8531, 9512, 10562, 11699, 12913, 14204, 15574, 17031, 18585, 20226, 21956, 23779, 25707, 27738, 29874
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 3 of A182259; see A211790 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    (See the program at A182259.)

A211793 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k >= x^k + y^k.

Original entry on oeis.org

0, 1, 0, 4, 1, 0, 10, 5, 1, 0, 20, 13, 5, 1, 0, 35, 28, 14, 5, 1, 0, 56, 50, 29, 14, 5, 1, 0, 84, 80, 53, 30, 14, 5, 1, 0, 120, 121, 88, 55, 30, 14, 5, 1, 0, 165, 175, 134, 90, 55, 30, 14, 5, 1, 0, 220, 244, 195, 138, 91, 55, 30, 14, 5, 1, 0, 286, 327, 270, 201, 139
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

Limiting row sequence: A000330.

Examples

			Northwest corner:
  0, 1, 4, 10, 20, 35, 56,  84
  0, 1, 5, 13, 28, 50, 80, 121
  0, 1, 5, 14, 29, 53, 88, 134
  0, 1, 5, 14, 30, 55, 90, 138
  0, 1, 5, 14, 30, 55, 91, 139
  0, 1, 5, 14, 30, 55, 91, 140
		

Crossrefs

Cf. A211790.
Cf. A000292 (row 1), A211636 (row 2), A211651 (row 3), A000330.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k >= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A000292 *)
    Table[t[2, n], {n, 1, z}]  (* A211636 *)
    Table[t[3, n], {n, 1, z}]  (* A211651 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* this sequence *)
    Table[k (k - 1) (2 k - 1)/6, {k, 1,
      z}] (* row-limit sequence, A000330 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

A211790(k,n) + R(k,n) = 3^(n-1).
Previous Showing 11-17 of 17 results.