cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A382919 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^3 )^2.

Original entry on oeis.org

1, 2, 13, 84, 580, 4216, 31824, 247168, 1962800, 15866016, 130122304, 1080101760, 9057113472, 76610188544, 652895283200, 5600752756224, 48323092761344, 419068973537792, 3650909105378304, 31937405800724480, 280419948474447872, 2470473454986891264
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=3, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(3/2) / (1-x)^3 )^2.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^2, where B(x) is the g.f. of A213282.

A366647 G.f. A(x) satisfies A(x) = 1 + x * (A(x) / (1 - x))^5.

Original entry on oeis.org

1, 1, 10, 100, 1120, 13600, 174352, 2322880, 31846720, 446387200, 6367988480, 92154502912, 1349572428800, 19963252142080, 297843703347200, 4476750466785280, 67724540010278912, 1030392038941573120, 15756269876770734080, 242027462112980172800
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A349311.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k-1, n-k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+4*k-1,n-k) * binomial(5*k,k) / (4*k+1).
Previous Showing 11-12 of 12 results.