A217677
Number of permutations in S_n containing an increasing subsequence of length 10.
Original entry on oeis.org
1, 101, 6063, 284431, 11592572, 433386000, 15343169775, 524963196399, 17597634740010, 583499409451862, 19269396089593156, 636977450902768356, 21156201514272916444, 708006643310351350076, 23925259865186482138965, 817728884509460388159381
Offset: 10
-
b:= proc(n) option remember;
`if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+
(101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*b(n-1)
-(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6
+491700*n^5 +353895381)*(n-1)^2*b(n-2) +(258011271+234066216*n
+58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*b(n-3)
-9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*b(n-4)
+893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*b(n-5)) /
((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2))
end:
a:= n-> n! -b(n):
seq(a(n), n=10..30);
A072167
T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916799, 479001478, 6227012074, 87177809092, 1307651456625, 20921799763626, 355647213494682, 6400805686152436, 121585553747301448, 2430677026538811240
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002
- Vaclav Kotesovec, Table of n, a(n) for n = 1..500
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 10, []):
seq(a(n), n=0..25); # Vaclav Kotesovec, Sep 10 2014, after Alois P. Heinz
-
RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0,a[1]==1,a[2]==2,a[3]==6,a[4]==24,a[5]==120},a,{n,1,20}] (* Vaclav Kotesovec, Sep 10 2014 *)
Comments