A185040
O.g.f.: 1/(1-x) * Sum_{n>=0} 1/(1-(n+1)*x)^n * x^n/n! * exp(-x/(1-(n+1)*x)).
Original entry on oeis.org
1, 1, 2, 5, 15, 54, 220, 973, 4607, 23230, 124088, 698471, 4124961, 25474314, 164063103, 1099233251, 7645091839, 55085061358, 410472347944, 3158307976315, 25057152530411, 204717532709542, 1720324316575275, 14853374782672785, 131632834029683663, 1196258970969508760
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 54*x^5 + 220*x^6 +...
where the o.g.f. equals the series:
A(x)*(1-x) = exp(-x/(1-x)) + x/(1-2*x)*exp(-x/(1-2*x)) + x^2/(1-3*x)^2/2!*exp(-x/(1-3*x)) + x^3/(1-4*x)^3/3!*exp(-x/(1-4*x)) + x^4/(1-5*x)^4/4!*exp(-x/(1-5*x)) + x^5/(1-6*x)^5/5!*exp(-x/(1-6*x)) + x^6/(1-7*x)^6/6!*exp(-x/(1-7*x)) +...
which simplifies to a power series in x with integer coefficients.
-
m = 26; Sum[1/(1 - (n+1)x)^n x^n Exp[-x/(1 - (n+1)x)]/n!, {n, 0, m}]/(1-x) + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 27 2020 *)
-
{a(n)=local(A=1+x, X=x+x*O(x^n)); A=1/(1-x)*sum(k=0, n, 1/(1-(k+1)*X)^k*x^k/k!*exp(-X/(1-(k+1)*X))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A243942
O.g.f.: Sum_{n>=0} n^(2*n) * x^n / (1 - n*x)^n * exp( -n^2*x / (1 - n*x) ) / n!.
Original entry on oeis.org
1, 1, 8, 121, 2698, 79654, 2929238, 129004633, 6619919386, 387904397222, 25555935470016, 1869945551975658, 150459006927310348, 13203459856456213172, 1254972882696473807298, 128439184335788533011489, 14082139161229781077548346, 1646731810035799151750487814
Offset: 0
O.g.f.: A(x) = 1 + x + 8*x^2 + 121*x^3 + 2698*x^4 + 79654*x^5 + 2929238*x^6 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^4*x^2/(1-2*x)^2*exp(-4*x/(1-2*x))/2! + 3^6*x^3/(1-3*x)^3*exp(-9*x/(1-3*x))/3! + 4^8*x^4/(1-4*x)^4*exp(-16*x/(1-4*x))/4! + 5^10*x^5/(1-5*x)^5*exp(-25*x/(1-5*x))/5! +...
simplifies to a power series in x with integer coefficients.
Illustrate the terms by:
a(1) = 1*1 = 1;
a(2) = 1*1 + 1*7 = 8;
a(3) = 1*1 + 2*15 + 1*90 = 121;
a(4) = 1*1 + 3*31 + 3*301 + 1*1701 = 2698;
a(5) = 1*1 + 4*63 + 6*966 + 4*7770 + 1*42525 = 79654; ...
where Stirling2(n+k,k) forms a rectangular table as follows:
1, 1, 1, 1, 1, 1, 1, 1, ...;
0, 1, 3, 6, 10, 15, 21, 28, ...;
0, 1, 7, 25, 65, 140, 266, 462, ...;
0, 1, 15, 90, 350, 1050, 2646, 5880, ...;
0, 1, 31, 301, 1701, 6951, 22827, 63987, ...;
0, 1, 63, 966, 7770, 42525, 179487, 627396, ...; ...
-
Flatten[{1,Table[Sum[Binomial[n-1,k-1] * StirlingS2[n+k,k],{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Aug 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n+1, (k^2*x)^k/(1-k*x)^k*exp(-k^2*x/(1-k*x+x*O(x^n)))/k!), n)}
for(n=0, 25, print1(a(n), ", "))
-
{Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
{a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n+k, k) * binomial(n-1, k-1)))}
for(n=0, 30, print1(a(n), ", "))
A245059
a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) * 2^(n-k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
Original entry on oeis.org
1, 1, 3, 17, 129, 1177, 12463, 149053, 1975473, 28628865, 449059179, 7562334793, 135837896769, 2588529249737, 52093016105575, 1102851978691749, 24480094135644513, 568066476383361793, 13745454515733689427, 346020796943921077057, 9043636093339718229697, 244954584886648170627641
Offset: 0
O.g.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 129*x^4 + 1177*x^5 + 12463*x^6 +...
where
A(x) = 1 + x/(1-2*x)*exp(-x/(1-2*x)) + 2^2*x^2/(1-4*x)^2*exp(-2*x/(1-4*x))/2! + 3^3*x^3/(1-6*x)^3*exp(-3*x/(1-6*x))/3! + 4^4*x^4/(1-8*x)^4*exp(-4*x/(1-8*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(2) = 1*1*2 + 1*1 = 3;
a(3) = 1*1*2^2 + 2*3*2 + 1*1 = 17;
a(4) = 1*1*2^3 + 3*7*2^2 + 3*6*2 + 1*1 = 129;
a(5) = 1*1*2^4 + 4*15*2^3 + 6*25*2^2 + 4*10*2 + 1*1 = 1177;
a(6) = 1*1*2^5 + 5*31*2^4 + 10*90*2^3 + 10*65*2^2 + 5*15*2 + 1*1 = 12463; ...
-
{a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)*2^(n-k)))}
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-2*k*x)^k*exp(-k*x/(1-2*k*x+x*O(x^n)))/k!), n)}
for(n=0, 25, print1(a(n), ", "))
A245060
a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) * 3^(n-k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
Original entry on oeis.org
1, 1, 4, 28, 271, 3172, 43174, 666577, 11445214, 215478712, 4401799930, 96757165012, 2273105615356, 56755763435503, 1499039156935948, 41714498328290992, 1218787798107634291, 37275555462806318512, 1190200470204107432854, 39581409916012393962280, 1368112674516484881342244
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 271*x^4 + 3172*x^5 + 43174*x^6 +...
where
A(x) = 1 + x/(1-3*x)*exp(-x/(1-3*x)) + 2^2*x^2/(1-6*x)^2*exp(-2*x/(1-6*x))/2! + 3^3*x^3/(1-9*x)^3*exp(-3*x/(1-9*x))/3! + 4^4*x^4/(1-12*x)^4*exp(-4*x/(1-12*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(2) = 1*1*3 + 1*1 = 4;
a(3) = 1*1*3^2 + 2*3*3 + 1*1 = 28;
a(4) = 1*1*3^3 + 3*7*3^2 + 3*6*3 + 1*1 = 271;
a(5) = 1*1*3^4 + 4*15*3^3 + 6*25*3^2 + 4*10*3 + 1*1 = 3172;
a(6) = 1*1*3^5 + 5*31*3^4 + 10*90*3^3 + 10*65*3^2 + 5*15*3 + 1*1 = 43174; ...
-
{a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)*3^(n-k)))}
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-3*k*x)^k*exp(-k*x/(1-3*k*x+x*O(x^n)))/k!), n)}
for(n=0, 25, print1(a(n), ", "))
A242019
a(n) = Sum_{k=0..n} Stirling2(2*n+k, k) * C(n, k).
Original entry on oeis.org
1, 1, 33, 3409, 728575, 265362370, 147228369351, 115651594418010, 122167455441632423, 167035663137431205196, 287018982366654934570328, 605456750773492887086145669, 1538306721887736189212800143193, 4633572348321634923252339927247392
Offset: 0
-
Table[Sum[Binomial[n,k] * StirlingS2[2*n+k,k],{k,0,n}],{n,0,20}]
Comments