cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A140717 Triangle read by rows: T(n,k) is the number of Dyck paths d of semilength n such that sum of peakheights of d - number of peaks of d = k (n >= 0, 0 <= k <= floor(n^2/4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 1, 4, 9, 12, 10, 4, 2, 1, 5, 14, 25, 31, 26, 16, 9, 4, 1, 1, 6, 20, 44, 70, 82, 74, 54, 38, 22, 12, 4, 2, 1, 7, 27, 70, 134, 196, 227, 215, 179, 139, 99, 64, 38, 20, 9, 4, 1, 1, 8, 35, 104, 231, 400, 558, 644, 641, 576, 488, 384, 288, 200, 134, 80
Offset: 0

Views

Author

Emeric Deutsch, Jun 08 2008

Keywords

Comments

T(n,k) is the number of 321-avoiding permutations of {1,2,...,n} having inversion number equal to k. Example: T(4,2) = 5 because we have 1423, 1342, 3124, 2143 and 2341.
Conjecture: antidiagonal sums equal A227309. - Mikhail Kurkov, Aug 30 2024

Examples

			T(4,2) = 5 because we have UDUUDUDD (5 - 3 = 2), UDUUUDD (4 - 2 = 2), UUDDUUDD (4 - 2 = 2), UUDUDDUD (5 - 3 = 2) and UUUDDDUD (4 - 2 = 2); here U = (1,1), D = (1,-1).
Triangle starts:
  1;
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,  4,  1;
  1, 4,  9, 12, 10,  4,  2;
  1, 5, 14, 25, 31, 26, 16, 9, 4, 1;
		

Crossrefs

Row sums are the Catalan numbers A000108.

Programs

  • Maple
    H := 1/(1+z-t*x*z-z*h[1]):
    for n to 13 do h[n]:=1/(1+z-x*t^(n+1)*z-z*h[n+1]) end do:
    G := subs({h[11]=0,x=1/t},H): Gser := simplify(series(G,z=0,12)):
    for n from 0 to 9 do P[n] := sort(coeff(Gser,z,n)) end do:
    for n from 0 to 9 do seq(coeff(P[n],t,j), j=0..floor((1/4)*n^2)) end do;
    # yields sequence in triangular form
  • Mathematica
    m = rows = 10; mt = 2 m + 1; mx = mz = m - 1;
    H[, , ] = 0; Do[H[t, x_, z_] = Series[1 + z (H[t, t x, z] - 1 + t x) H[t, x, z], {t, 0, mt}, {x, 0, mx}, {z, 0, mz}] // Normal, {m}];
    G[t_, z_] = Series[H[t, 1/t, z], {t, 0, mt}, {z, 0, mz}] // Normal // Collect[#, z]&;
    CoefficientList[#, t]& /@ CoefficientList[G[t, z], z] // Take[#, m]& // Flatten (* Jean-François Alcover, Nov 25 2018 *)

Formula

G.f.: G(t,z) = H(t,1/t,z), where H(t,x,z) = 1 + zH(t,x,z)[H(t,tx,z)-1+tx] (H(t,x,z) is the trivariate g.f. of Dyck paths with respect to semilength, sum of peak-heights and number of peaks, marked by z, t and x, respectively).
Sum_{k>=0} k*T(n,k) = A008549(n-1).
Row n has 1 + floor(n^2/4) entries.
Conjecture: n-th row polynomial equals t_n for n > 0 where we start with vector v of fixed length m with elements v_i = 1, then set t = v and for i=1..m-1, for j=i+1..m apply [v_i, v_j] := [v_i + z^(j-i)*v_j, z*v_i + v_j] (here square brackets mean that instead of sequentially assigning v_i and then v_j, we reserve their values (for example, as A = v_i, B = v_j) and then assign them in any order) and t_{i+1} := v_{i+1} (after ending each cycle for j). It also looks like that if we change z^(j-i) to z^(2*(j-i)) it gives us equivalence of t_n and n-th row polynomial of A227543. - Mikhail Kurkov, Aug 30 2024

A227045 G.f.: 1/(1 - q/G(0)) where G(k) = 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 95, 260, 713, 1959, 5386, 14815, 40759, 112151, 308609, 849240, 2337009, 6431246, 17698332, 48704714, 134032593, 368850417, 1015056867, 2793383746, 7687248186, 21154913043, 58217239536, 160210872557, 440892153268, 1213312738702, 3338974845151, 9188688696438
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Crossrefs

Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 2] - Floor[Range[nmax + 2]/2])]]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ) );
    gf = 1 /(1- q/G(0));
    Vec(gf)

Formula

G.f.: 1/(1-q/ (1-q/(1-q/ (1-q^2/(1-q^2/ (1-q^3/(1-q^3/ (1-q^4/(1-q^4/ (1-q^5/(1-q^5/ (1-...))))))))))) ).
G.f. A(x) = 1/(1 - B(x)) where B(x) is the g.f. of A006958.
a(n) ~ c * d^n, where d = 2.751949072495748078279227332764623096815571855905843246297955690122791154... and c = 0.215973947378529032758849789768859077066690378163074586384819930605436492... - Vaclav Kotesovec, Sep 05 2017

A291875 Expansion of 1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - x^4/(1 - x^4/ ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, -1, -1, -2, -3, -6, -10, -19, -34, -63, -115, -213, -391, -723, -1333, -2463, -4547, -8403, -15522, -28686, -53006, -97963, -181042, -334606, -618415, -1142994, -2112545, -3904592, -7216810, -13338856, -24654268, -45568784, -84225393, -155675230
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2017

Keywords

Crossrefs

Cf. A006958, A227309, A291148 (similar sequence).

Formula

a(n) = -A227309(n-1) for n > 0.
Previous Showing 11-13 of 13 results.