A227773 Least splitter of f(n) and f(n+1), where s(1) = 1, s(2) = 1, s(n) = s(n-1) + s(n-2)/(n-2) and f(n) = n/(n - s(n)).
1, 3, 3, 18, 39, 71, 323, 536, 1001, 8544, 45723, 208524, 398959, 3400196, 5394991, 10391023, 150869313, 1097649283, 5467464369, 10622799089, 132941053437, 403978495031, 403978495031, 8286870547680, 76601727404275, 399178399621704, 781379079653017
Offset: 2
Examples
The least splitters are the denominators of the least splitting rationals for f(n) and f(n+1): 2/1, 8/3, 8/3, 49/18, 106/39, 193/71, 878/323, 1457/536, 2721/1001, 23225/8544, 124288/45723, 566827/208524, 1084483/398959, 9242691/3400196, 14665106/5394991, 28245729/10391023 f(2) = 2 <= 2/1 < f(3) = 3; f(3) = 3 > 8/3 >= f(4) = 8/3; f(4) = 8/3 <= 8/3 < f(5) = 30/11; f(5) = 30/11 > 49/18 >= f(6) = 144/53.
Links
- Matthew House, Table of n, a(n) for n = 2..807
Programs
-
Mathematica
z = 17; r[x_, y_] := Module[{a, b, x1 = Min[{x, y}], y1 = Max[{x, y}]}, If[x == y, x, b = NestWhile[#1 + 1 &, 1, ! (a = Ceiling[#1 x1 - 1]) < Ceiling[#1 y1] - 1 &]; (a + 1)/ b]]; s[1] = 1; s[2] = 1; s[n_] := s[n] = s[n - 1] + s[n - 2]/(n - 2); N[Table[s[k], {k, 1, z}]]; N[Table[k/(k - s[k]), {k, 2, z}], 20]; t = Table[r[n/(n - s[n]), (n + 1)/(n + 1 - s[n + 1])], {n, 2, z}]; fd = Denominator[t] (* Peter J. C. Moses, Jul 30 2013 *)
Formula
Extensions
Corrected and edited by Clark Kimberling, Jun 26 2015
Corrected and extended by Matthew House, Aug 14 2024
Comments