cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A227669 Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_7) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 5040, 93770800, 1891074940160, 38746316631586896, 796655971557156062816, 16391903881902996952724768, 337320253484345016223956919936, 6941648177366735193973359263017216, 142850870919946441196223189856661775872, 2939698583689917131062885788617101100432640
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 7! = 5040.
		

Crossrefs

Column k=7 of A227655.
Cf. A000142.

A227670 Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_8) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 40320, 8201380224, 1850957806329280, 427196257460311066608, 99184884676523895557447104, 23066495371480810626495005438496, 5366698074745901061777599023075846976, 1248760044848501400078426452469652899962528, 290576954131557518350262914717217159752148225600
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 8! = 40320.
		

Crossrefs

Column k=8 of A227655.
Cf. A000142.

A227671 Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_9) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 362880, 914570667792, 2618225365541294080, 7716228754248308194763776, 22936896882912935631904962898880, 68371528221534300846360580266415146176, 203989890816333447880297347963799273322740544, 608787871679690303320891056934368872583827110376320
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(1) = 9! = 362880.
		

Crossrefs

Column k=9 of A227655.
Cf. A000142.

A227672 Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_10) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 3628800, 126651310675680, 5140671157605632743040, 216245142312150285990621189096, 9200010705455824278689045306643126144, 392997779138060823651445903318712755280168960, 16812841813975825541536765059695075768059296587720768
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(10) = 10! = 3628800.
		

Crossrefs

Column k=10 of A227655.
Cf. A000142.

A227657 Number of lattice paths from {3}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 8, 320, 33904, 7453320, 2940381648, 1891074940160, 1850957806329280, 2618225365541294080, 5140671157605632743040, 13563806648374752374753280, 46834662679585827124435729920, 206992078337280281738792256468480, 1149167357682367147108624229192064000
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^3 = 8:
.     (2,3)       (1,2)       (0,1)
.    /     \     /     \     /     \
(3,3)       (2,2)       (1,1)       (0,0)
.    \     /     \     /     \     /
.     (3,2)       (2,1)       (1,0)
		

Crossrefs

Row n=3 of A227655.
Cf. A000079.

A227658 Number of lattice paths from {4}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 16, 2328, 1281696, 1897242448, 6173789662504, 38746316631586896, 427196257460311066608, 7716228754248308194763776, 216245142312150285990621189096, 9001993707519997876764394044746416, 537141544856485105833302134461795535280
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^4 = 16:
.     (3,4)       (2,3)       (1,2)       (0,1)
.    /     \     /     \     /     \     /     \
(4,4)       (3,3)       (2,2)       (1,1)       (0,0)
.    \     /     \     /     \     /     \     /
.     (4,3)       (3,2)       (2,1)       (1,0)
		

Crossrefs

Row n=4 of A227655.

A227659 Number of lattice paths from {5}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 32, 16936, 48447504, 482913033152, 12981179566917088, 796655971557156062816, 99184884676523895557447104, 22936896882912935631904962898880, 9200010705455824278689045306643126144, 6059192105645758114515721403170312097489088, 6265311017439732830154018479087530633271635314944
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^5 = 32:
.     (4,5)       (3,4)       (2,3)       (1,2)       (0,1)
.    /     \     /     \     /     \     /     \     /     \
(5,5)       (4,4)       (3,3)       (2,2)       (1,1)       (0,0)
.    \     /     \     /     \     /     \     /     \     /
.     (5,4)       (4,3)       (3,2)       (2,1)       (1,0)
		

Crossrefs

Row n=5 of A227655.
Cf. A000079.

A227660 Number of lattice paths from {6}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 64, 123208, 1831288096, 122911984813568, 27297846037161958056, 16391903881902996952724768, 23066495371480810626495005438496, 68371528221534300846360580266415146176, 392997779138060823651445903318712755280168960, 4100456330337958604264976205090832646574842298883968
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^6 = 64.
		

Crossrefs

Row n=6 of A227655.
Cf. A000079.

A227661 Number of lattice paths from {7}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 128, 896328, 69221669104, 31283451053916800, 57403822541579269311072, 337320253484345016223956919936, 5366698074745901061777599023075846976, 203989890816333447880297347963799273322740544, 16812841813975825541536765059695075768059296587720768
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^7 = 128.
		

Crossrefs

Row n=7 of A227655.
Cf. A000079.

A227662 Number of lattice paths from {8}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

Original entry on oeis.org

1, 1, 256, 6520712, 2616540574496, 7962224756951452544, 120712076511505386344017520, 6941648177366735193973359263017216, 1248760044848501400078426452469652899962528, 608787871679690303320891056934368872583827110376320
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2013

Keywords

Examples

			a(2) = 2^8 = 256.
		

Crossrefs

Row n=8 of A227655.
Cf. A000079.
Previous Showing 11-20 of 23 results. Next