A227669
Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_7) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 5040, 93770800, 1891074940160, 38746316631586896, 796655971557156062816, 16391903881902996952724768, 337320253484345016223956919936, 6941648177366735193973359263017216, 142850870919946441196223189856661775872, 2939698583689917131062885788617101100432640
Offset: 0
A227670
Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_8) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 40320, 8201380224, 1850957806329280, 427196257460311066608, 99184884676523895557447104, 23066495371480810626495005438496, 5366698074745901061777599023075846976, 1248760044848501400078426452469652899962528, 290576954131557518350262914717217159752148225600
Offset: 0
A227671
Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_9) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 362880, 914570667792, 2618225365541294080, 7716228754248308194763776, 22936896882912935631904962898880, 68371528221534300846360580266415146176, 203989890816333447880297347963799273322740544, 608787871679690303320891056934368872583827110376320
Offset: 0
A227672
Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_10) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 3628800, 126651310675680, 5140671157605632743040, 216245142312150285990621189096, 9200010705455824278689045306643126144, 392997779138060823651445903318712755280168960, 16812841813975825541536765059695075768059296587720768
Offset: 0
A227657
Number of lattice paths from {3}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 8, 320, 33904, 7453320, 2940381648, 1891074940160, 1850957806329280, 2618225365541294080, 5140671157605632743040, 13563806648374752374753280, 46834662679585827124435729920, 206992078337280281738792256468480, 1149167357682367147108624229192064000
Offset: 0
a(2) = 2^3 = 8:
. (2,3) (1,2) (0,1)
. / \ / \ / \
(3,3) (2,2) (1,1) (0,0)
. \ / \ / \ /
. (3,2) (2,1) (1,0)
A227658
Number of lattice paths from {4}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 16, 2328, 1281696, 1897242448, 6173789662504, 38746316631586896, 427196257460311066608, 7716228754248308194763776, 216245142312150285990621189096, 9001993707519997876764394044746416, 537141544856485105833302134461795535280
Offset: 0
a(2) = 2^4 = 16:
. (3,4) (2,3) (1,2) (0,1)
. / \ / \ / \ / \
(4,4) (3,3) (2,2) (1,1) (0,0)
. \ / \ / \ / \ /
. (4,3) (3,2) (2,1) (1,0)
A227659
Number of lattice paths from {5}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 32, 16936, 48447504, 482913033152, 12981179566917088, 796655971557156062816, 99184884676523895557447104, 22936896882912935631904962898880, 9200010705455824278689045306643126144, 6059192105645758114515721403170312097489088, 6265311017439732830154018479087530633271635314944
Offset: 0
a(2) = 2^5 = 32:
. (4,5) (3,4) (2,3) (1,2) (0,1)
. / \ / \ / \ / \ / \
(5,5) (4,4) (3,3) (2,2) (1,1) (0,0)
. \ / \ / \ / \ / \ /
. (5,4) (4,3) (3,2) (2,1) (1,0)
A227660
Number of lattice paths from {6}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 64, 123208, 1831288096, 122911984813568, 27297846037161958056, 16391903881902996952724768, 23066495371480810626495005438496, 68371528221534300846360580266415146176, 392997779138060823651445903318712755280168960, 4100456330337958604264976205090832646574842298883968
Offset: 0
A227661
Number of lattice paths from {7}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 128, 896328, 69221669104, 31283451053916800, 57403822541579269311072, 337320253484345016223956919936, 5366698074745901061777599023075846976, 203989890816333447880297347963799273322740544, 16812841813975825541536765059695075768059296587720768
Offset: 0
A227662
Number of lattice paths from {8}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
Original entry on oeis.org
1, 1, 256, 6520712, 2616540574496, 7962224756951452544, 120712076511505386344017520, 6941648177366735193973359263017216, 1248760044848501400078426452469652899962528, 608787871679690303320891056934368872583827110376320
Offset: 0