cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A380253 Numbers k such that (25^k + 2^k)/27 is prime.

Original entry on oeis.org

19, 109, 967, 2143, 11471, 11939
Offset: 1

Views

Author

Robert Price, Jan 17 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(25^# + 2^#)/27] &]

A381092 Numbers k such that (43^k + 2^k)/45 is prime.

Original entry on oeis.org

31, 41, 61, 599, 1231, 1249, 35671
Offset: 1

Views

Author

Robert Price, Feb 13 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# + 2^#)/45] &]

A382866 Numbers k such that (49^k + 2^k)/51 is prime.

Original entry on oeis.org

13, 307, 1187, 9241, 94321
Offset: 1

Views

Author

Robert Price, Jun 11 2025

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(49^# + 2^#)/51] &]

A385244 Numbers k such that (33^k + 2^k)/35 is prime.

Original entry on oeis.org

47, 269, 2287, 5059
Offset: 1

Views

Author

Robert Price, Jul 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(33^# + 2^#)/35] &]

A386383 Numbers k such that (22^k + 3^k)/25 is prime.

Original entry on oeis.org

2617, 3739, 14207, 43789
Offset: 1

Views

Author

Robert Price, Aug 17 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(22^# + 3^#)/25] &]

A387390 Numbers k such that (28^k + 3^k)/31 is prime.

Original entry on oeis.org

3, 17, 443, 3907, 18911, 50929
Offset: 1

Views

Author

Robert Price, Aug 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(28^# + 3^#)/31] &]

A387392 Numbers k such that (29^k + 3^k)/32 is prime.

Original entry on oeis.org

11, 181, 229, 311, 701, 4493, 5233, 13879
Offset: 1

Views

Author

Robert Price, Aug 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(29^# + 3^#)/32] &]

A387473 Numbers k such that (31^k + 3^k)/34 is prime.

Original entry on oeis.org

3, 5, 313, 677
Offset: 1

Views

Author

Robert Price, Aug 30 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# + 3^#)/34] &]

A387474 Numbers k such that (32^k + 3^k)/35 is prime.

Original entry on oeis.org

3, 47, 107, 157, 4799, 21841
Offset: 1

Views

Author

Robert Price, Aug 30 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(32^# + 3^#)/35] &]
Previous Showing 11-19 of 19 results.