cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A255529 Indices of primes in the 9th-order Fibonacci number sequence, A104144.

Original entry on oeis.org

10, 19, 878
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(4) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,0,1}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    a104144(n) = polcoeff(x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9) + O(x^(n+1)), n);
    lista(nn) = {for (n=1, nn, if (isprime(a104144(n)), print1(n, ", ")););} \\ Michel Marcus, Feb 27 2015

A255530 Indices of primes in the 9th-order Fibonacci number sequence, A251746.

Original entry on oeis.org

10, 19, 59, 79, 12487
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(6) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255531 Indices of primes in the 9th-order Fibonacci number sequence, A251747.

Original entry on oeis.org

10, 16, 116, 236, 316, 1376, 5066, 103696, 120949
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(10) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,1,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,0,0,0,0,1,0,0},125000],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 29 2017 *)

A255532 Indices of primes in the 9th-order Fibonacci number sequence, A251749.

Original entry on oeis.org

10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(9) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255533 Indices of primes in the 9th-order Fibonacci number sequence, A251750.

Original entry on oeis.org

10, 33, 43, 253, 1253, 2389
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255534 Indices of primes in the 9th-order Fibonacci number sequence, A251751.

Original entry on oeis.org

10, 12, 232, 502
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(5) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)

A255536 Indices of primes in the 9th-order Fibonacci number sequence, A251752.

Original entry on oeis.org

10, 11, 21, 29, 301, 57089
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A230016 Indices of primes in the tribonacci-like sequence, A214825.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 16, 17, 26, 32, 104, 109, 120, 133, 312, 546, 608, 2274, 2527, 2932, 4462, 4680, 6001, 7103, 17402, 17874, 20664, 26341, 27954, 32869, 36204, 41521, 49065, 64172, 66318, 196078
Offset: 1

Views

Author

Robert Price, Feb 22 2014

Keywords

Comments

a(39) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,3,3}; Print[1];Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A235396 Indices of primes in the tribonacci-like sequence, A081172.

Original entry on oeis.org

3, 4, 5, 9, 12, 16, 24, 32, 101, 116, 245, 34553, 52517, 99245, 140197
Offset: 1

Views

Author

Robert Price, Jan 09 2014

Keywords

Comments

a(16) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1, 1, 0}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]
Previous Showing 21-29 of 29 results.