cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A333424 Primes that are palindromes in primorial base.

Original entry on oeis.org

3, 7, 11, 31, 47, 211, 223, 229, 281, 293, 2311, 2347, 2383, 2843, 2879, 30091, 30181, 30211, 30307, 30367, 30427, 30493, 30553, 30643, 30829, 30859, 34871, 34961, 35051, 35117, 35267, 35363, 35393, 35423, 510751, 511711, 513067, 513307, 515143, 517459, 518179
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			3 is a term since it is a prime number and its representation in primorial base is 11 (1 * 2# + 1) which is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    max = 8; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Select[Range[nmax], PrimeQ[#] && PalindromeQ @ IntegerDigits[#, MixedRadix[bases]] &]

A341433 Numbers that are divisible by the product of their digits in primorial base representation.

Original entry on oeis.org

1, 3, 9, 21, 39, 51, 99, 249, 261, 309, 669, 729, 2559, 2571, 2619, 2979, 3051, 4239, 7179, 7191, 32589, 32601, 32649, 32661, 33009, 33021, 37209, 37269, 37629, 51489, 92649, 92709, 93069, 97281, 272889, 274509, 543099, 543111, 543159, 543519, 543591, 544779
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2021

Keywords

Comments

The primorial base repunits (A143293) are all terms since their product of digits in primorial base is 1.
All the terms are zeroless in primorial base, and therefore they are terms of A328574. In particular, since the last digit of even numbers in primorial base is 0, all the terms are odd numbers.

Examples

			9 is a term since 9 in primorial base is 111 (9 = 3! + 2! + 1!) and 9 is divisible by 1*1*1 = 1.
		

Crossrefs

A143293 is a subsequence.
Subsequence of A328574.

Programs

  • Mathematica
    max = 12; bases = Prime@Range[max, 1, -1]; nmax = Times @@ bases - 1; q[n_] := FreeQ[(d = IntegerDigits[n, MixedRadix[bases]]), 0] && Divisible[n, Times @@ d]; Select[Range[1, 10^5, 2], q]

A342117 Lexicographically latest sequence of distinct nonnegative integers such that the multisets of frequencies of digits in the primorial base representations of n and of a(n) are the same.

Original entry on oeis.org

0, 1, 5, 3, 4, 2, 27, 24, 21, 9, 29, 18, 17, 28, 26, 16, 15, 12, 11, 25, 23, 8, 22, 20, 7, 19, 14, 6, 13, 10, 189, 147, 144, 180, 207, 204, 111, 159, 150, 39, 201, 129, 198, 197, 196, 120, 195, 108, 192, 191, 188, 99, 209, 187, 186, 184, 183, 90, 208, 182, 77
Offset: 0

Views

Author

Rémy Sigrist, Feb 28 2021

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers.

Examples

			The first terms, in decimal and in primorial base, alongside the corresponding multisets of frequencies (ignoring 0's), are:
  n   a(n)  prim(n)  prim(a(n))  freq(n)
  --  ----  -------  ----------  ------------
   0     0        0           0  ()
   1     1        1           1  (1)
   2     5       10          21  (1, 1)
   3     3       11          11  (2)
   4     4       20          20  (1, 1)
   5     2       21          10  (1, 1)
   6    27      100         411  (1, 2)
   7    24      101         400  (1, 2)
   8    21      110         311  (1, 2)
   9     9      111         111  (3)
  10    29      120         421  (1, 1, 1)
  11    18      121         300  (1, 2)
  12    17      200         221  (1, 2)
		

Crossrefs

See A342102 for similar sequences.

Programs

  • PARI
    See Links section.

Formula

a(n) < A002110(k) for any n < A002110(k).

A354470 Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 4, 2, 4, 5, 5, 5, 5, 5, 5, 6, 4, 0, 4, 0, 4, 6, 7, 7, 1, 1, 1, 1, 7, 7, 8, 6, 8, 0, 2, 0, 8, 6, 8, 9, 9, 9, 9, 3, 3, 9, 9, 9, 9, 10, 8, 10, 8, 10, 2, 10, 8, 10, 8, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Rémy Sigrist, Jun 02 2022

Keywords

Comments

The nonnegative integers together with A form an abelian group; A354469 gives inverse elements.
Each row is a permutation of the nonnegative integers.

Examples

			Square array A(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+----------------------------------------------------------------
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    1|   1   0   3   2   5   4   7   6   9   8  11  10  13  12  15  14
    2|   2   3   4   5   0   1   8   9  10  11   6   7  14  15  16  17
    3|   3   2   5   4   1   0   9   8  11  10   7   6  15  14  17  16
    4|   4   5   0   1   2   3  10  11   6   7   8   9  16  17  12  13
    5|   5   4   1   0   3   2  11  10   7   6   9   8  17  16  13  12
    6|   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21
    7|   7   6   9   8  11  10  13  12  15  14  17  16  19  18  21  20
    8|   8   9  10  11   6   7  14  15  16  17  12  13  20  21  22  23
    9|   9   8  11  10   7   6  15  14  17  16  13  12  21  20  23  22
   10|  10  11   6   7   8   9  16  17  12  13  14  15  22  23  18  19
   11|  11  10   7   6   9   8  17  16  13  12  15  14  23  22  19  18
   12|  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27
   13|  13  12  15  14  17  16  19  18  21  20  23  22  25  24  27  26
   14|  14  15  16  17  12  13  20  21  22  23  18  19  26  27  28  29
   15|  15  14  17  16  13  12  21  20  23  22  19  18  27  26  29  28
		

Crossrefs

Cf. A004442, A235168, A354438 (factorial base analog), A354469.

Programs

  • PARI
    A(n,k, s=i->prime(i)) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }

Formula

A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k).
A(n, 0) = n.
A(n, k) = 0 iff k = A354469(n).
A(n, 1) = A004442(n).

A355037 a(n) is the product of the digits of n in primorial base.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 3, 0, 6, 0, 0, 0, 4, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 3, 0, 6, 0, 0, 0, 4, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 4, 0, 8, 0, 0, 0, 6, 0, 12, 0, 0, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 16 2022

Keywords

Examples

			The first terms, alongside the digits of n in primorial base, are:
  n   a(n)  pr(n)
  --  ----  -----
   0     0      0
   1     1      1
   2     0    1_0
   3     1    1_1
   4     0    2_0
   5     2    2_1
   6     0  1_0_0
   7     0  1_0_1
   8     0  1_1_0
   9     1  1_1_1
  10     0  1_2_0
  11     2  1_2_1
  12     0  2_0_0
  13     0  2_0_1
  14     0  2_1_0
  15     2  2_1_1
		

Crossrefs

Programs

  • PARI
    a(n) = { my (p=1); forprime (r=2, oo, p*=n%r; n\=r; if (p==0 || n==0, return (p))) }

Formula

a(n) = 1 iff n belongs to A143293.
a(n) > 0 iff n belongs to A328574 \ {0}.

A333425 Primorial base emirps: prime numbers whose primorial base reversal is a different prime.

Original entry on oeis.org

227, 283, 2339, 2351, 2357, 2393, 2767, 2777, 2789, 2797, 2801, 2833, 2851, 2861, 30059, 30089, 30161, 30169, 30187, 30197, 30223, 30293, 30313, 30319, 30389, 30391, 30449, 30467, 30509, 30517, 30559, 30631, 30649, 30677, 30689, 30727, 30763, 30781, 30803, 30851
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			227 is a term since it is a prime number and its representation in primorial base is 10221, whose reversal, 12201, is the primorial base representation of another prime number, 283.
		

Crossrefs

Programs

  • Mathematica
    max = 7; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; emirpQ[n_] := PrimeQ[n] && Module[{d = IntegerDigits[n, MixedRadix[bases]]}, r = Reverse @ d; IntegerDigits[(m = FromDigits[r, MixedRadix[bases]]), MixedRadix[bases]] == r && m != n && PrimeQ[m]]; Select[Range[nmax], emirpQ]

A354469 Write n in primorial base, then replace each nonzero digit d of radix p with p-d.

Original entry on oeis.org

0, 1, 4, 5, 2, 3, 24, 25, 28, 29, 26, 27, 18, 19, 22, 23, 20, 21, 12, 13, 16, 17, 14, 15, 6, 7, 10, 11, 8, 9, 180, 181, 184, 185, 182, 183, 204, 205, 208, 209, 206, 207, 198, 199, 202, 203, 200, 201, 192, 193, 196, 197, 194, 195, 186, 187, 190, 191, 188, 189
Offset: 0

Views

Author

Rémy Sigrist, Jun 02 2022

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers, similar to A225901.
There are exactly two fixed points: a(0) = 0 and a(1) = 1.

Examples

			For n = 42:
- the primorial base expansion of 42 is: (1, 2, 0, 0),
- the corresponding radixes are: (7, 5, 3, 2),
- so the primorial base expansion of a(42) is: (7-1, 5-2, 0, 0) = (6, 3, 0, 0),
- and a(42) = 198.
		

Crossrefs

Programs

  • PARI
    a(n, s=i->prime(i)) = { my (v=0, f=1, r); for (i=1, oo, if (n==0, return (v), r=s(i); v+=f*((-n)%r); f*=r; n\=r)) }
Previous Showing 11-17 of 17 results.