A340846
a(n) is the number of edges in the diagram of the symmetric representation of sigma(n).
Original entry on oeis.org
4, 6, 8, 10, 10, 12, 12, 14, 16, 16, 14, 18, 14, 18, 22, 22, 16, 22, 16, 22, 26, 22, 18, 26, 24, 22, 28, 28, 20, 30, 20, 30, 30, 24, 28, 32, 22, 26, 32, 34, 22, 34, 22, 34, 38, 28, 24, 38, 32, 40, 34, 36, 24, 38, 38, 42, 36, 30, 26, 42, 26, 30, 46, 42, 40, 44, 28
Offset: 1
Illustration of initial terms:
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| | |_
. _ _ |_ _ |_ |_ _ |_ _ |
. _ _ |_ _|_ |_ | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
n: 1 2 3 4 5 6
a(n): 4 6 8 10 10 12
.
For n = 6 the diagram has 12 edges so a(6) = 12.
On the other hand the diagram has 12 vertices and only one part or region, so applying Euler's formula we have that a(6) = 12 + 1 - 1 = 12.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _
. |_ _ _ _| | |_ |_ |
. |_ |_ |_ _ |_|_ _
. |_ _ |_ _ | | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_| |_| |_|
.
n: 7 8 9
a(n): 12 14 16
.
For n = 9 the diagram has 16 edges so a(9) = 16.
On the other hand the diagram has 14 vertices and three parts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
. n a(n) Diagram
--------------------------------------------------------------------------
_
1 4 |_| _
_| | _
2 6 |_ _| | | _
_ _|_| | | _
3 8 |_ _| _| | | | _
_ _| _| | | | | _
4 10 |_ _ _| _|_| | | | | _
_ _ _| _ _| | | | | | _
5 10 |_ _ _| | _| | | | | | | _
_ _ _| _| _|_| | | | | | | _
6 12 |_ _ _ _| _| _ _| | | | | | | | _
_ _ _ _| _| _ _| | | | | | | | | _
7 12 |_ _ _ _| | _| _ _|_| | | | | | | | | _
_ _ _ _| | _| | _ _| | | | | | | | | | _
8 14 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _
_ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |
9 16 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | |
_ _ _ _ _| | _| _| _ _| | | | | | | | |
10 16 |_ _ _ _ _ _| | _| | _ _|_| | | | | | |
_ _ _ _ _ _| | _| | _ _ _| | | | | |
11 14 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | |
_ _ _ _ _ _| | _ _| _|_| _ _ _|_| | |
12 18 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| |
_ _ _ _ _ _ _| | _| | _| | _ _ _|
13 14 |_ _ _ _ _ _ _| | | _| _| _| |
_ _ _ _ _ _ _| | |_ _| _| _|
14 18 |_ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _| | _ _|
15 22 |_ _ _ _ _ _ _ _| | |
_ _ _ _ _ _ _ _| |
16 22 |_ _ _ _ _ _ _ _ _|
...
Cf.
A237271 (number of parts or regions).
Cf.
A340848 (number of edges in the diagram with subparts).
Cf.
A317109 (total number of edges in the unified diagram).
Cf.
A000203,
A005843,
A196020,
A236104,
A235791,
A237048,
A237270,
A237590,
A237591,
A237593,
A239660,
A245092,
A262626,
A340847.
A294847
a(n) is the total number of line segments in the diagram described in A236104 after n-th stage, with a(0) = 2.
Original entry on oeis.org
2, 4, 6, 8, 12, 14, 20, 22, 28, 32, 38, 40, 48, 50, 56, 64, 74, 76, 86, 88, 98, 106, 112, 114, 126, 132, 138, 146, 160, 162
Offset: 0
Illustration of initial terms (n = 1..6):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 6 8 12 14 20
Cf.
A000203,
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237590,
A237591,
A237593,
A245092,
A262626,
A294723.
A299778
Irregular triangle read by rows: T(n,k) is the part that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned part is already associated to a previous peak or if there is no part adjacent to the k-th peak, with n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 28, 0, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 8, 0, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 39, 0, 0, 0, 0, 10, 0, 0, 0, 10, 42, 0, 0, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 60, 0, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1
Triangle begins (rows 1..28):
1;
3;
2, 2;
7, 0;
3, 3;
12, 0, 0;
4, 0, 4;
15, 0, 0;
5, 3, 5;
9, 0, 9, 0;
6, 0, 0, 6;
28, 0, 0, 0;
7, 0, 0, 7;
12, 0, 12, 0;
8, 8, 0, 0, 8;
31, 0, 0, 0, 0;
9, 0, 0, 0, 9;
39, 0, 0, 0, 0;
10, 0, 0, 0, 10;
42, 0, 0, 0, 0;
11, 5, 0, 5, 0, 11;
18, 0, 0, 0, 18, 0;
12, 0, 0, 0, 0, 12;
60, 0, 0, 0, 0, 0;
13, 0, 5, 0, 0, 13;
21, 0, 0, 0 21, 0;
14, 6, 0, 6, 0, 14;
56, 0, 0, 0, 0, 0, 0;
...
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
. 12 _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
. | | |_ _ _ _ _ _ _|
. 0 _| | |
. |_ _|9 _ _ _ _ _ _ |_ _ 0
. 12 _ _| | _ _ _ _ _|_ _ _ _ _ 5 |_ 0
. 0 _ _ _| | 0 _| | |_ _ _ _ _| |
. | _ _ _| 9 _|_ _| |_ _ 3 |_ _ _ 7
. | | 0 _ _| | 12 _ _ _ _ |_ | | |
. | | | _ _| 0 _| _ _ _|_ _ _ 3 |_|_ _ 5 | |
. | | | | 0 _| | |_ _ _| | | | |
. | | | | | _ _| |_ _ 3 | | | |
. | | | | | | 3 _ _ | | | | | |
. | | | | | | | _|_ 1 | | | | | |
. _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
. | | | | | | | | | | | | | | | |
. | | | | | | |_|_ _ _| | | | | | | |
. | | | | | | 2 |_ _|_ _| _| | | | | | |
. | | | | |_|_ 2 |_ _ _| 0 _ _| | | | | |
. | | | | 4 |_ 7 _| _ _|0 | | | |
. | | |_|_ _ 0 |_ _ _ _ | _| _ _ _| | | |
. | | 6 |_ |_ _ _ _|_ _ _ _| | 0 _| _ _|0 | |
. |_|_ _ _ 0 |_ 4 |_ _ _ _ _| _| | _ _ _| |
. 8 | |_ _ 0 | 15| _| | _ _ _|
. |_ | |_ _ _ _ _ _ | _ _| 0 _| | 0
. 8 |_ |_ |_ _ _ _ _ _|_ _ _ _ _ _| | 0 _| _|
. 0 |_ _| 6 |_ _ _ _ _ _ _| _ _| _| 0
. 0 | 28| _ _| 0
. |_ _ _ _ _ _ _ _ | | 0
. |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
. 8 |_ _ _ _ _ _ _ _ _|
. 31
.
The diagram contains A237590(16) = 27 parts.
For the construction of the spiral see A239660.
The number of nonzero terms in row n is
A237271(n).
The triangle with n rows contain
A237590(n) nonzero terms.
Cf.
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239657,
A239660,
A239931-
A239934,
A240542,
A244050,
A245092,
A250068,
A250070,
A261699,
A262626,
A279387,
A279388,
A279391,
A280850,
A280851.
A317292
a(n) is the total number of edges after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 0.
Original entry on oeis.org
0, 4, 8, 14, 20, 26, 36, 42, 50, 60, 70, 76, 92, 98, 108, 124, 136, 142, 160, 166, 182, 198, 208, 214, 238, 250, 260, 276, 294, 300
Offset: 0
Illustration of initial terms (n = 1..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 8 14 20 26 36
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 42 50 60
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 300 edges, 239 vertices and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A317109 (analog for the diagram that contains only parts).
First differs from
A317109 at a(6).
Cf.
A000203,
A001227,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A294723,
A296508.
A317293
a(n) is the total number of vertices after n-th stage in the diagram of the symmetries of sigma in which the parts of width > 1 are dissected into subparts of width 1, with a(0) = 1.
Original entry on oeis.org
1, 4, 7, 11, 16, 20, 28, 32, 39, 46, 54, 58, 72, 76, 84, 96, 107, 111, 126, 130, 144, 156, 164, 168, 190, 199, 207, 219, 235, 239
Offset: 0
Illustration of initial terms (n = 0..9):
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| |_ _ _| |_|_
. _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ |
. _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
. . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 1 4 7 11 16 20 28
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _
. |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ |
. |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _
. |_ _ _| |_|_ _ |_ _ _| |_|_ _ | |_ _ _| |_|_ _ | |
. |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | |
. |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | |
. |_ | | | | | | |_ | | | | | | | |_ | | | | | | | |
. |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_|
.
. 32 39 46
.
.
Illustration of the two-dimensional diagram after 29 stages (contains 239 vertices, 300 edges and 62 regions or subparts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ _ _ | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ |
|_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_
|_ _ _ _ _ _ _ _ _ _ | | |_ _ |_ _| |_|_
|_ _ _ _ _ _ _ _ _ _| | |_ _ | |_ |_ _ |_ _
|_ _ _ _ _ _ _ _ _ | |_ _ _| |_ |_ | |_ _ |
|_ _ _ _ _ _ _ _ _| | |_ _ |_ |_ |_|_ _ | |
|_ _ _ _ _ _ _ _ | |_ _ |_ _|_ |_ _ | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| | |_ _| |_ | |_ _ | | |_|_ _ _ _ _ | |
|_ _ _ _ _ _ _ | |_ _ |_ |_|_ | | |_|_ _ _ _ _ | | | |
|_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | |
|_ _ _ _ _ _ | |_ |_ |_ | | |_|_ _ _ _ | | | | | | | |
|_ _ _ _ _ _| |_ _| |_|_ | |_|_ _ _ _ | | | | | | | | | |
|_ _ _ _ _ | |_ |_ _ | |_ _ _ _ | | | | | | | | | | | |
|_ _ _ _ _| |_ |_ | |_|_ _ _ | | | | | | | | | | | | | |
|_ _ _ _ |_ _|_ |_|_ _ _ | | | | | | | | | | | | | | | |
|_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | |
|_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | |
|_ _ _| |_|_ _ | | | | | | | | | | | | | | | | | | | | | |
|_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | |
|_ | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
For the definition of "subparts" see
A279387.
For the triangle of sums of subparts see
A279388.
Cf.
A060831 (number of regions or subparts).
Compare with
A294723 (analog for the diagram that contains only parts).
First differs from
A294723 at a(6).
Cf.
A000203,
A196020,
A235791,
A237048,
A237590,
A237591,
A237270,
A237271,
A237593,
A245092,
A244050,
A262626,
A280850,
A280851,
A280940,
A285901,
A296508,
A317109.
A293750
a(n) is the total number of line segments that belong to the Dyck paths in the diagram of the symmetries of sigma described in A236104 and A237593 after n-th stage, with a(0) = 0.
Original entry on oeis.org
0, 2, 4, 6, 10, 12, 18, 20, 26, 30, 36, 38, 46, 48, 54, 62, 72, 74, 84, 86, 96, 104, 110, 112, 124, 130, 136, 144, 158, 160
Offset: 0
Illustration of initial terms (n = 1..6):
. _ _ _ _
. _ _ _ _ _ _ |_
. _ _ _ _ _ _| _ _ _| |_
. _ _ _ _ |_ _ _ |_ _ _ _ |_ _ |
. _ _ _ _|_ _ _|_ | _ _|_ | | _ _|_ | | |
. _ _ | _ | | _ | | | _ | | | | _ | | | | |
. | | | | | | | | | | | | | | | | | | | | |
.
. 2 4 6 10 12 18
.
Cf.
A000203,
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237590,
A237591,
A237593,
A245092,
A262626,
A294723,
A294847.
A339583
Leading term in row 2*n of A237270.
Original entry on oeis.org
3, 7, 12, 15, 9, 28, 12, 31, 39, 42, 18, 60, 21, 56, 72, 63, 27, 91, 30, 90, 96, 42, 36, 124, 39, 49, 120, 120, 45, 168, 48, 127, 144, 63, 54, 195, 57, 70, 84, 186, 63, 224, 66, 180, 234, 84, 72, 252, 75, 217, 108, 210, 81, 280, 84, 248, 120, 105, 90, 360, 93, 112, 312, 255, 99, 336
Offset: 1
Row 10 of A237270 is [9, 9], so a(5) = 9 (the first of the two 9's, officially).
A347528
Total number of layers of width 1 of all symmetric representations of sigma() with subparts of all positive integers <= n.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 78, 79, 80, 82, 83, 84, 86, 87, 88
Offset: 1
For the first five positive integers every symmetric representation of sigma() with subparts has only one layer of width 1, so a(5) = 1 + 1 + 1 + 1 + 1 = 5.
For n = 6 the symmetric representation of sigma(6) with subparts has two layers of width 1 as shown below:
_ _ _ _
|_ _ _ |_
| |_|_
|_ _ |
| |
| |
|_|
So a(6) = 5 + 2 = 7.
Cf.
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237590,
A237593,
A279387,
A279391,
A279667,
A280850,
A280851,
A296508.
-
Accumulate@ Map[Max@ Accumulate[#] &, Table[If[OddQ[k], Boole@ Divisible[n, k], -Boole@ Divisible[n - k/2, k]], {n, 68}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}]] (* Michael De Vlieger, Oct 27 2021 *)
A302248
Irregular triangle read by rows in which the odd-indexed terms of the n-th row together with the even-indexed terms of the same row but listed in reverse order give the n-th row of triangle A299778.
Original entry on oeis.org
1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 4, 0, 15, 0, 0, 5, 5, 3, 9, 0, 0, 9, 6, 6, 0, 0, 28, 0, 0, 0, 7, 7, 0, 0, 12, 0, 0, 12, 8, 8, 8, 0, 0, 31, 0, 0, 0, 0, 9, 9, 0, 0, 0, 39, 0, 0, 0, 0, 10, 10, 0, 0, 0, 42, 0, 0, 0, 0, 11, 11, 5, 0, 0, 5, 18, 0, 0, 18, 0, 0, 12, 12, 0, 0, 0, 0, 60, 0, 0, 0, 0, 0, 13, 13, 0, 0, 5, 0
Offset: 1
Triangle begins (rows 1..28):
1;
3;
2, 2;
7, 0;
3, 3;
12, 0, 0;
4, 4, 0;
15, 0, 0;
5, 5, 3;
9, 0, 0, 9;
6, 6, 0, 0;
28, 0, 0, 0;
7, 7, 0, 0;
12, 0, 0, 12;
8, 8, 8, 0, 0;
31, 0, 0, 0, 0;
9, 9, 0, 0, 0;
39, 0, 0, 0, 0;
10, 10, 0, 0, 0;
42, 0, 0, 0, 0;
11, 11, 5, 0, 0, 5;
18, 0, 0, 18, 0, 0;
12, 12, 0, 0, 0, 0;
60, 0, 0, 0, 0, 0;
13, 13, 0, 0, 5, 0;
21, 0, 0, 21, 0, 0;
14, 14, 6, 0, 0, 6;
56, 0, 0, 0, 0, 0, 0;
...
For n = 21 the 21st row of A299778 is [11, 5, 0, 5, 0, 11], so the 21st row of this triangle is [11, 11, 5, 0, 0, 5].
The number of nonzero terms in row n is
A237271(n).
The triangle with n rows contain
A237590(n) nonzero terms.
Cf.
A196020,
A235791,
A236104,
A237048,
A237270,
A237591,
A237593,
A239660,
A240542,
A244050,
A245092,
A262626,
A279387,
A279388,
A280851,
A299778.
Comments