cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A238564 Number of partitions of 7^n into parts that are at most n.

Original entry on oeis.org

0, 1, 25, 9976, 96721601, 27755132198233, 260988425663232777762, 85980297709044488588773397089, 1041234796567281969389323426605470061650, 480592801966130874383703685770422428530605893693255, 8695567207026865032892758221262809270061815825979643751114435291
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2014

Keywords

Crossrefs

Column k=7 of A238010.

Formula

a(n) = [x^(7^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 7^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

A238565 Number of partitions of 8^n into parts that are at most n.

Original entry on oeis.org

0, 1, 33, 22102, 478968264, 400686586344699, 14330879421541116923943, 23444113544017670689348160755868, 1841159754991692001851990839259642586671980, 7197738918090981779157236361118960948634130123398244711
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2014

Keywords

Crossrefs

Column k=8 of A238010.

Formula

a(n) = [x^(8^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 8^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

A238566 Number of partitions of 9^n into parts that are at most n.

Original entry on oeis.org

0, 1, 41, 44652, 1965803130, 4223556692359571, 490686876939553950148311, 3299362171812031624458362654344896, 1347816410652573760215295879527613786555869189, 34687845413783594101366282545316028561007822069601179170488
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2014

Keywords

Crossrefs

Column k=9 of A238010.

Formula

a(n) = [x^(9^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 9^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

A238567 Number of partitions of 10^n into parts that are at most n.

Original entry on oeis.org

0, 1, 51, 83834, 6954866112, 34732639965323612, 11574681724845786651679939, 275575507062293332528670070330578043, 492095606182604983628979092635386202795929807572, 68346538155515186680097859376764556127526656338966443473179293
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2014

Keywords

Crossrefs

Column k=10 of A238010.

Formula

a(n) = [x^(10^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 10^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015
Previous Showing 11-14 of 14 results.